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1. Introduction 

The complex error function  
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)exp(/21)exp()(   of a complex variable 

iyxz   occurs in many branches of mathematics and physics. Rather abundant also are the 

methods for evaluating this function, from tables [1, 2] to modern software [3-5]. This function is 

particularly common in the plasma physics, since its computation is a necessary ground of the ion 

cyclotron resonance wave analysis in the laboratory fusion plasmas. Routinely, in applications this 

function is evaluated massively, therefore the efficiency of involved numerical algorithm is of 

primary importance. 

At present time the algorithm 380 [3, 4] is the most successful, and most of the program 

libraries contain this algorithm. Jacobi’s continued fraction  
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has been proved to provide the fast calculation of the complex error function by means of this 

method for large-| |z  values (Region Q, Fig.1). 

The same continued fraction with the Taylor 

expansion along the negative direction of the 

imaginary axis has been exploited for 

moderate-| |z  values (Region R, Fig.1). The 

Taylor expansion at the zero point 
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has been used for small-| |z  values (Region S, 

Fig.1). This method provides the accuracy up to 

14 significant digits and the average 

computational time of the single function value 

approximately equals to 10 times for the single computation of the exponential function. From the 

standpoint of the computational time this method is most cheap (10-20 Arbitrary Units) in the 

Fig.1.Efficiency of Gautschi’s algoritm 680 
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regions S and Q and most expensive (30-70 Arbitrary Units) in the Region R. The main purpose 

of the present work is an attempt to clarify the issue of maximum possible efficiency to evaluate 

this function in the most problematic region R. Also, for calculations in this region we try to modify 

in order to accelerate the algorithm [3, 4] as far as possible. 

2. Computational procedure 

2.1 Algorithm 380 

For evaluation of the complex error function )( zw  at the point z  of the region R it was 

suggested to use a truncated Taylor expansion of this function at the point ihzz 
0

 [3] 
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where 0h  is suitably chosen. The expression (1) can be written in the form: 

).()2()(

0

ihzwhzw
n

N

n

n
 



         (2) 

A ratio of two successive functions )(/)(
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 can be then developed into the 

continued fraction  

.
)1(

2/1
1

n

n
rnizh

r





          ,...,2,1,0n     (3) 

The method [3] uses the fact that at the one end of this continued fraction these ratios rather quickly 

tend to zero, if point ihzz 
0

 is not close to abscissa axis. For this reason, this continued fraction 

can be truncated for the some finite value of the index Nn   , and the last ratio can be put to 

zero )0( 

r . It can be shown that the sum in (2) can be recursively ( 0,...1,  NNn ) calculated 

through 
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where 0
N

s  and 
1

/2)(


 szw  . The choice of h  affects both the convergence of the fraction 

(3) so and the convergence of the expansion (2). In fact, large values of h  give rise to fast 

convergence of fraction (3), but slow convergence in (2), while small values of h  yield slow 

convergence of (3), but fast convergence in (2). A good choice of h  is therefore one which strikes 

a balance between these two opposing effects. This compromise value, corresponding to accuracy 

up to 10 significant digits, is 6.1h  (Gautschi) and for accuracy up to 14 significant digits is 

88.1h  (Poppe&Wijers). In this algorithm, such a compromise in the choice of h  corresponds to 

the optimum efficiency of the function evaluation and, consequently, the issue of the further 

algorithm improvement seems totally exhausted. 
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2.2 One more algorithm  

However, instead the expansion (1), which is performed strictly along the imaginary axis, 

one can also use a more general expansion 
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and, instead the Gautschi functions )( zw
n

, introduce a set of the functions )( z
n

 , related to the 

derivatives )(
)(

zw
n  by means of relations  
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Here   is related to 
0

zz   in (5) as i
eazz 

0
 ( 2

0

2

0
)()( yyxxa  ). It is easy to see that 

for 2/   it is true )()( zwz
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 .  The expansion (5) has then the form  
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These functions satisfy to the recursive relation of 2nd order 
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If one assumes that the value of the function )()(
000

zwz   is known, it will be also known the 

ratio 
1001

/)(
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zr .  On the base the recursive relation (8) can be evaluated 

n
r  with indexes 

,1,...,1,0  Nn  respectively.  

This way has some advantages in comparison with the previous algorithm. In first, 

coefficients of the fraction (8) in this case are calculated exactly, or rather with an accuracy of the 

starting ratio 

1
r  or the function )(

0
zw . Hence the choice of a

 
is not limited to compromise 

mentioned above, and can be entirely subordinated to more efficient computing, namely, reduction 

the number of terms of the series (2).  

Secondly, the expansions (1, 2) can be performed not only strictly along the imaginary axis, 

but along the somewhat direction to this favorable axis as well. The test calculations have showed 

that the maximum deviation angle should not significantly differ from the angle 2/ . These 

features allow one to construct a strategy of computing that significantly reduces the number of 

terms in the sum (7). 
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 The region R is covered by a grid with the variable step a . The step size is chosen inversely 

proportional to the cost of computing time for evaluation of the function )( zw , presented in Fig.1. 

For area of R below the line with the number 70 is a step is 20/70, where the number 20 

corresponds to the region Q. Although this method is twice less effective than Gauschi-Poppe-

Wijers method, nevertheless it can be used for calculating )( zw  with more high accuracy. 

Obviously, that a decrease of the grid size will lead to a reduction of the expansion (5) and, 

consequently, for a given accuracy of calculations will improve the speed of calculations.  

The some disadvantage of this algorithm is fact that somewhat array of storage must be 

provided to hold the values of function )( zw  at the knots of the grid. However, the preservation of 

a two-dimensional array, even large enough, is not a big problem in the time of rapid progress in 

technology of information storage.  

3. Performance characteristics and tests 

Fortunately, this approach can be utilized for estimation of the maximum possible efficiency 

to compute this function.  Really, if one reduces the step of grid a , the series (7) will converge 

faster and therefore the number of terms of the series can also be reduced. This process can 

continue until the series (7) will consist of only say four members that corresponds to the value 

4
105.2


a .  Calculations show that for the grid of this size the speed of calculations will be near 

seven times greater than the calculation using the algorithm 380. Note however, that in this case 

array of storage about 4GB must be provided to hold the values of function at the knots of the grid.  

Conclusions 

1. The extreme speed for evaluation of the complex error function in the region R is of order 

1.3-1.5 times for computation of the single exponential function. 

2. The speed of the complex error function evaluation can be provided twice faster than by 

means of the algorithm 380 with the usage of additional memory about 15KB. 
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