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1. Introduction

The complex error function w(z) = exp( —zz){1+ 2i/\/;jzexp( tz)dt] of a complex variable

z=x+iy occurs in many branches of mathematics and physics. Rather abundant also are the

methods for evaluating this function, from tables [1, 2] to modern software [3-5]. This function is
particularly common in the plasma physics, since its computation is a necessary ground of the ion
cyclotron resonance wave analysis in the laboratory fusion plasmas. Routinely, in applications this
function is evaluated massively, therefore the efficiency of involved numerical algorithm is of
primary importance.

At present time the algorithm 380 [3, 4] is the most successful, and most of the program
libraries contain this algorithm. Jacobi’s continued fraction
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has been proved to provide the fast calculation of the complex error function by means of this
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approximately equals to 10 times for the single computation of the exponential function. From the

standpoint of the computational time this method is most cheap (10-20 Arbitrary Units) in the
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regions S and Q and most expensive (30-70 Arbitrary Units) in the Region R. The main purpose
of the present work is an attempt to clarify the issue of maximum possible efficiency to evaluate
this function in the most problematic region R. Also, for calculations in this region we try to modify
in order to accelerate the algorithm [3, 4] as far as possible.

2. Computational procedure

2.1 Algorithm 380

For evaluation of the complex error function w(z) at the point z of the region R it was

suggested to use a truncated Taylor expansion of this function at the point z, = z+ih [3]

N (n) H
W(z) = z w' " (z +ih)

n=0

(—ih)" 1)

where h > o is suitably chosen. The expression (1) can be written in the form:

w(z) =3 (2h)"w, (z +ih). (2)

n=0
A ratio of two successive functions r_, =w, (z+ih)/w, (z+ih) can be then developed into the
continued fraction

v n=012, .., 3)

ro. - .
h—iz+(n+1)r,

The method [3] uses the fact that at the one end of this continued fraction these ratios rather quickly

tend to zero, if point z, = z +ih is not close to abscissa axis. For this reason, this continued fraction

can be truncated for the some finite value of the index n=v > N, and the last ratio can be put to

zero (r, =0) . It can be shown that the sum in (2) can be recursively (n=nN,N -1... ,0) calculated
through
Snfl = rnf].l:(Zh)n + Sn]‘ (4)

where s, =0 and w(z) = 2/+/xz -s . The choice of n affects both the convergence of the fraction

(3) so and the convergence of the expansion (2). In fact, large values of h give rise to fast
convergence of fraction (3), but slow convergence in (2), while small values of h yield slow
convergence of (3), but fast convergence in (2). A good choice of h is therefore one which strikes
a balance between these two opposing effects. This compromise value, corresponding to accuracy
up to 10 significant digits, is h=1.6 (Gautschi) and for accuracy up to 14 significant digits is
h =1.88 (Poppe&Wijers). In this algorithm, such a compromise in the choice of h corresponds to
the optimum efficiency of the function evaluation and, consequently, the issue of the further

algorithm improvement seems totally exhausted.
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2.2 One more algorithm
However, instead the expansion (1), which is performed strictly along the imaginary axis,

one can also use a more general expansion

N (n)
w(z):zwn—(lzo)(z—zo)n ) (5)

n=0

and, instead the Gautschi functions w_(z), introduce a set of the functions ¢_(z), related to the
derivatives w™ (z) by means of relations

w®(z) = (2¢7")"nlgp, (2) , (N=0,1,2,..). (6)

Here ¢ isrelatedto z -z, in(5)as z-z, =ae" (a:\/(x—x0)2+(y— y,)’ ). It is easy to see that

for o = -z /2 itistrue ¢ _(z) =w,(z). The expansion (5) has then the form

w(z) =3 ¢,(z,)(2a)". (7)

n=0
These functions satisfy to the recursive relation of 2" order
ip 2igp

€
T

z,e

¢n+1(20)+ q)nq(zo):O, n=0,12,..,

n+1
where the relations ¢, (z,) = w(z,) and ¢_, = -i2e " I/ are true . A ratio of two those successive

functions r’, = ¢, (z,)/9,.,(z,) Can be developed into recursive relation of the type (3)

ip ip
=l FZ +1/2we I n=0,12, .., (8)

0
n+1 r.

If one assumes that the value of the function ¢ (z,) = w(z,) is known, it will be also known the
ratio r% = ¢,(z,)/¢_, . On the base the recursive relation (8) can be evaluated r” with indexes
n=0,1,..,N -1, respectively.

This way has some advantages in comparison with the previous algorithm. In first,

coefficients of the fraction (8) in this case are calculated exactly, or rather with an accuracy of the

starting ratio r? or the functionw(z,). Hence the choice of a is not limited to compromise

mentioned above, and can be entirely subordinated to more efficient computing, namely, reduction
the number of terms of the series (2).

Secondly, the expansions (1, 2) can be performed not only strictly along the imaginary axis,
but along the somewhat direction to this favorable axis as well. The test calculations have showed
that the maximum deviation angle should not significantly differ from the angle -~ /2. These
features allow one to construct a strategy of computing that significantly reduces the number of

terms in the sum (7).
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The region R is covered by a grid with the variable step a . The step size is chosen inversely

proportional to the cost of computing time for evaluation of the function w(z), presented in Fig.1.

For area of R below the line with the number 70 is a step is 20/70, where the number 20
corresponds to the region Q. Although this method is twice less effective than Gauschi-Poppe-

Wijers method, nevertheless it can be used for calculating w(z) with more high accuracy.

Obviously, that a decrease of the grid size will lead to a reduction of the expansion (5) and,
consequently, for a given accuracy of calculations will improve the speed of calculations.
The some disadvantage of this algorithm is fact that somewhat array of storage must be

provided to hold the values of function w(z) at the knots of the grid. However, the preservation of

a two-dimensional array, even large enough, is not a big problem in the time of rapid progress in
technology of information storage.
3. Performance characteristics and tests
Fortunately, this approach can be utilized for estimation of the maximum possible efficiency
to compute this function. Really, if one reduces the step of grid a, the series (7) will converge
faster and therefore the number of terms of the series can also be reduced. This process can
continue until the series (7) will consist of only say four members that corresponds to the value
a=2.5-10"*. Calculations show that for the grid of this size the speed of calculations will be near
seven times greater than the calculation using the algorithm 380. Note however, that in this case
array of storage about 4GB must be provided to hold the values of function at the knots of the grid.
Conclusions
1. The extreme speed for evaluation of the complex error function in the region R is of order
1.3-1.5 times for computation of the single exponential function.
2. The speed of the complex error function evaluation can be provided twice faster than by

means of the algorithm 380 with the usage of additional memory about 15KB.
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