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I. The mechanisms for generation of fluid motions with additional symmetry, frequently 
refered to as flows, have been studied extensively in recent years both in plasmas and fluid 
dynamics. In a plasma allowing for inhomogeneities, the gradient-specific modes known as 
drift type modes are able to propagate in the direction of translation symmetry, i.e. 
perpendicular to the gradient. These modes can then spontaneously generate structures with 
higher saymmetry, the large scale flows, in a way similar to the established Reynolds stress in 
hydrodynamics, using the free energy stored in density and temperature gradients. The 
process of generation of such structures is energetically sustained through the well-known 
inverse cascade guaranteed in two-dimensional (and quasi-two-dimensional) fluids by the 
conservation of energy and enstrophy. Here we investigate the generation of large scale 
magnetic structures by underlying small scale magnetic electron drift (MED) wave 
turbulence. These turbulent magnetic fluctuations are drift-type modes excited in 
non-uniform initially non-magnetized plasma, characterized by a frequency range 
in-between the electron and ion plasma frequencies. These modes may be stable or unstable, 
depending on the combination of density and electron temperature gradients. Phenomena 
occurring in such time scales are important as a source of different magnetic structures 
encountered in space plasma, laser fusion plasma, as well as in a number of plasma devices.  
The particular interest in these studies is to formulate the conditions for the formation and 
existence of the infinitely long rows of vortices or vortex streets with finite vorticity 
associated with MED waves. To perform the analysis we use the two-field nonlinear model 
equations for MED modes.  The source of the instability is the baroclinic vector  in the 
electron fluid which gives rise to a finite vorticity. These equations support two spectrally 
conserved integrals of motion. The double cascade is a consequence of existence of these two 
integrals and it can be inferred that the mean square magnetic field cascades towards longer 
scales. Together with the continuous evolution, these properties are sufficient for  existing 
the stationary localized 2D-solutions, the magnetic vortex structures. The stationary 
localized solutions of the vortex-street type are obtained. Finally, the evolution of nonlinearly 
interacting MED modes is illustrated by a simulation study of the model equations for 
different set of parameters. 
 
II.  The motion of the considered modes is assumed to take place in the plane perpendicular 
to the magnetic field and hence a quasi-two-dimensional analysis is applied, where only the 
perturbed magnetic field is directed along the third dimension, here  chosen to be the z axis. 
These modes are placed in a non-uniform unmagnetized plasma with density and temperature 
gradients along the x axis. The temperature and density gradients of the fluctuations are in 
general not collinear, and this generates a vorticity in electron fluid. The consequent motion 
generates a perpendicular magnetic field (with vanishing equilibrium part), ( ), ,B x y t z , 
which actually plays the role of a stream function. Due to a  typical time scale of the MED 
modes, the ions play the role of a neutralizing background in the mode dynamics, whereas the 
electrons move fast enough to equalize any density perturbation in a relatively short time. 
Therefore, the electron density will be considered constant on time, 0n n= . The temperature 
can be written as the sum of an equilibrium value 0T  and a perturbation T. We  assume that 
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the length scale of the fluctuations is much smaller than that of the equilibrium 
inhomogeneities, (this can be expressed by small parameters 0ln /n n kε ∇  and 

0ln /T T kε ∇ , where 1 / pek c ω−
  is the typical spatial scale of the fluctuations), and take 

n Tε ε ε  . Starting then from the momentum equation and the energy equation, the model 
equations for MED mode turbulence can be derived up to the lowest non-vanishing order in 
ε  and read in dimensionless form 
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0, TB B B B v
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Here, ( )0 0lnv n x= ∇ , ( )0 0 0 02 / 3 lnw T v T= − ∇  may be regarded as constant coefficients, 

the length unit is ( )/ pec ω , the magnetic field and the temperature are normalized by 

( )e m B B→ , and ( )2 2
pe c m T Tω → , the curl brackets denote the Poisson brackets and are 

defined as { } ( ),a b a b≡ ∇ ×∇ ⋅z . The dispersion relation of the linear version of Eqs.(1) is 

  
 ( )2 2 2

0 0 1yv w k kω  = +   (2) 

Note that a purely growing solution is possible for 2 3T nε ε> , or ( )0 0 0v w < , which can 
explain the measured strong magnetic fields in laser-produced laser experiments. Of course, 
due to this linear growth, the linear approximation breaks down and nonlinear effects have to 
be included. On the other hand, in a stable plasma, ( )0 0 0v w > , the phase velocity of linear 

waves in the y direction has an upper limit, indeed,  ( ) ( )1 2 1 2
0 0 0 0yv w k v wω− < < . Eqs.(1) 

have two invariants. Assuming an infinite ( ),x y  plane and sufficiently rapidly vanishing 
fields at the infinity, these integrals are found to be 
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∫       and  ( )X BT B T dxdy= +∇ ⋅∇∫  (3) 

Thus, whereas the T field is advected by the B field, it also drives it. In the full nonlinear 
system (1) these  integrals are manifestation of this field coupling. In the weakly nonlinear 
approximation, it will turn out that these integrals play a role similar to that of energy and 
enstrophy  in several 1-filed 2-D systems. In the frame of this approximation, the analysis of 
spectral properties of the MED modes within the model Eqs.(1) shows that the presence of 
these two invariants necessitates the double energy cascade as the key property of the MED 
mode turbulence. The nonlinear transfer of wave energy from small scales towards the long 
wave length region (the so-called "inverse cascade") is a cause of spontaneous generation 
and sustainment of large scale structures. So, the MED mode turbulence is capable of 
generating the large scale wing of the wave spectrum.  
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III. We now consider stationary solutions of Eqs.(1) which propagate with constant velocity 
ˆuy . Setting t u y∂ ∂ = − ∂ ∂  and introducing the stream function B uxψ = −  we find that the 

stationary solution will be given by 
 

                      ( ) ( )2 01 vr ux s
u

ψ ψ ψ ′∇ = + − 
 

   and   ( ) 0T s w xψ= +  (4) 

where r and s  are arbitrary functions. We show now that in the set defined by (4) there exist 
stationary solutions which are localized in one direction and periodic in the other. To this end 

we choose ( )
0

us
v

ψ ψ= , so that the first expression in the set (4) is reduced to ( )2 rψ ψ∇ = , 

which is the relation between the stream function ( )ψ  and the vorticity  often used in the 
fluid dynamics. Consider two possible particular cases, namely, 
 

( )1 sinhr ψ ξ ψ=  and  ( ) ( )2 expr A Aψ ψ= −  

 
which correspond to the "sinh-Poisson" equation and to the Liouville-equation.  The 
solutions of these equations are well-defined in 2-D fluid dynamics and under some 
restrictions on free parameters they describe, physically, so-called "vortex streets". If  

( )2
1,2rψ ψ∇ = , the solutions to these equations are known as the "breather", 1ψ , and 

Kelvin-Stuart cat's eyes, 2ψ ,  and  are given by 
 

    1
sin4arctan

cosh
b a yh
a bx

ψ
 

=   
 

,  and  ( )2 2
2 2 ln 8 2 cosh 2 1cosA b a bx a byψ  = + −  

 (5) 

where ( )1,   0,   0   b a a bξ ψ= − > > and ( )21  a ψ> , a and b are arbitrary constants. As 

can be seen from (5), these solutions describe vortex flow ( )2 0ψ∇ ≠  which is localized in 

the x direction and periodic in y.  In the Kelvin-Stuart cat's eyes solution, 2ψ , the parameter a 
describes the width of the cat's eyes. As a decreases to 1 the cat's eyes diminish and the 
limiting flow is purely zonal. 
 
IY. The vortex solutions (5) are essentially nonlinear and therefore the velocity u cannot be 
arbitrary. Indeed, the localized solutions with finite energy must satisfy the boundary 
conditions 0B →  and 0T →  at infinity. This means that the streamlines constψ =  are 
open and extend to infinity, except maybe in a finite region where the amplitude of B is large. 
In the region of open streamlines, the outer region, the functions ( )s ψ  and ( )r ψ  are 

determined uniquely by the boundary conditions at infinity and given by ( ) ( )0s w uψ ψ= , 

( ) 2r ψ ρ ψ= , where 2 2
0 01 v w uρ = − . Taking into account these relations yields the 

vorticity equation for the outer region 2 2B Bρ∇ = . Thus, 2 0  ρ >  is a necessary condition 
for the solution to be localized. The condition 2

0 0u v w>  can easily be understood from the 
linear dispersion relation. Any stationary structure propagating within the phase velocity 
interval is oscillating, while structures whose velocity is outside of this interval must have an 
exponentially decreasing profile. Since the amplitude of any localized structure must be 
small far away from the center, its velocity must therefore be outside the linear region. This is 
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the general property of many different nonlinear wave equations: localized, nonlinear 
structures and linear waves cover complementary regions in velocity space. 
 
Y.  We have performed a simulations study of the system (1) for different sets of parameters. 
The simulation code is based on a pseudospectral method to resolve derivatives in space with 
periodic boundary conditions with random fluctuations as initial conditions.   

       
Figure 1: Linearly unstable regime. Magnetic field and temperature fluctuations 

 

In the unstable regime, 0 0 0v w < , in Fig. 1, we could observe magnetic field generation and 
the formation of large scale magnetic structures, accompanied by small-scale turbulence 
visible in the temperature fluctuations.  

        
Figure 2: Linearly stable regime. Magnetic field and temperature fluctuations 

 

In the linearly stable, small amplitude regime, 0 0 0v w > , in Fig. 2, we observe small-scale 
turbulence and the formation of long rows of vortex street flows (zonons). 

 
Figure 3: Large amplitude regime. Magnetic field and temperature  fluctuations. 

 

In the large amplitude regime, illustrated in Fig. 3, with initial amplitude 10 times larger than 
in Fig. 2, we observe the formation of vortices and vortex pairs.  
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