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1. Introduction. The Biberman-Holstein (B-H) equation is a fundamental tool for
describing the radiative transfer (RT) in the resonance atomic/ionic spectral lines under
condition of the complete redistribution over photon energy within spectral line width (i.e.
full loss of memory) in the elementary act of absorption-emission by an atom/ion in plasmas
and gases (see, e.g., [1], for astrophysics, and [2], for radiation losses and spectroscopy of
fusion plasmas). The B-H model was applied to the hydrogen isotopes Lyman-alpha line RT
in ITER and JET divertor [3] and the evaluation of plasma opacity impact upon current decay
after disruptions in tokamaks [4].

Here we report on the scaling laws of the Green function [5] of the non-stationary B-H
equation in an infinite homogeneous medium. It is shown that the Green function may be
represented as an (auto-model) function of a single argument which depends on the scaling
law for the excitation front propagation. This scaling is defined by a simple equation and
describes essential non-locality of the B-H RT. The approximate auto-model solution is tested
against exact numerical one for various spectral line shapes (Doppler, Lorentz, Voigt,
Holtsmark) in a broad range of propagation time and distance from the source, including the
asymptotic behavior far in advance of the propagation front and far behind it.

2. Scaling laws for Green function. The B-H equation is obtained from a system of
equations for spectral intensity of resonance radiation and spatial density of excited atoms,

F(r,t). This system is reduced to a single equation for F(r,t), which appears to be an

integral equation, non-reducible to a differential diffusion-type equation (4 and o are the
inverse lifetimes of excited atomic state with respect to spontaneous radiative decay and
collisional quenching, respectively; q is the non-radiative source of excited atoms):

oF (1)
ot

= A[G(r —)F (r,, AV, - (A+ o) F(r,t) +q(r.t). (1)

The kernel G is determined by the (normalized) emission spectral line shape, &,, and the
absorption coefficient k . In homogeneous media, G depends on the distance between the

points of emission and absorption of the quantum:
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1 dT(r)

G(r)=————
() 4zr® dr

, T(r)=Tgw exp(—k,r)dw. (2)

The non-locality of the B-H RT demands special definition of the mean time, t(r), needed
for a photon to pass the distance » from a point instant source, q(r,t)=o(r—r,)o(t—t,). The
respective scalings for various line broadening mechanisms strongly deviate from the
diffusion law (see [5, 2]). For Doppler and Lorentz line shapes, one has t (p) =1/[AT(p)]
[6], where p=k(a,)r, and T, (p) is the asymptotic of the Holstein functional 7"at p>>1.

Our numerical analysis of Green function [5] for various line shapes shows that the
scaling defined by the equation

AtT(p)=1, (3)

gives good approximation for the time moment when F(r,t) attains its maximum value at the

distance r from the source (Fig. 1). We use Eq. (3) as a definition of the effective front

propagation, p. (t).
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Fig. 1. Time moment when F(r,t) attains its maximum value at the distance » from the source (blue curve) and

its approximations with Eq. (3) for 4 = 1 (green curve) and A = A, (red curve) [6] ((4s)" = 0.96 for Lorentz
(dispersional) line shape and (4,s)" = 0.82 for Doppler line shape).

For a short time, A™ <t <t () (or, equivalently, far in advance of front propagation

coming at the distance r, p> p, (t)>1), one has F ~tG(p) [5] that corresponds to the

direct excitation of distant atoms by the photons in the far wings of the spectral line shape (i.e.

by the Levy flights).
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The Green function far behind the propagation front, p < p, (t), or equivalently

t>t, (p)> A", may be estimated assuming the local uniformity of the excitation due to the

fast exchange of atoms in the core of the spectral line shape. This gives a quasi-plateau:

1

F(r,t)zﬁn(rfr (t)-r) 4)

gﬂ'(rfr (t))
Comparison of Eq. (4) with numerical calculations of the exact Green function [5] proves this
asymptotic to give a good scaling for time dependence for various line shapes, with some

deviation of numerical constant.

The success of the scaling (4) suggests an analysis of the Green function [5] with

respect to the following auto-model representation:
Faum(r,t:ro,to)=(t—to>~c{|r—ro|-f K%B : 5)

r-r

The results of the reconstruction of the function f from comparison of the function (5) with
numerical calculation of the Green function [5] for the Doppler, Lorentz, Voigt, and

Holtsmark line shapes are shown in figure 2.
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Figure 2. Reconstruction of the argument of automodel function (5) from its comparison with the exact Green function [5] for
various spectral line shapes: (a) Lorentz; (b) Doppler; (c) Voigt for a = «/In 2 A® e /Aa)DoppIer =1, (d) Holtsmark.

3. Conclusions. The Green function [5] of the non-stationary Biberman-Holstein
equation in an infinite homogeneous medium is shown to possess an automodel form for
various spectral line shapes in a broad range of propagation time and distance from the
source. The simplicity of the auto-model Green function suggests the possibility to construct a
universal algorithm for numerical simulation of the B-H solution in the case of non-stationary

and stationary RT in a finite medium.
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