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Introduction Coronal mass ejections (CMEs) are huge clouds of magnetized plasma that erupt

from the solar corona into the interplanetary space. They propagate in the heliosphere with

velocities ranging from 20 to 3200 km s−1 with an average speed of 489 km s−1, based on

SOHO/LASCO coronagraph measurements between 1996 and 2003. CMEs are associated with

enormous changes and disturbances in the coronal magnetic field and are the major contributor

to severe space weather at the Earth. Flows and instabilities play a major role in the dynamics

of magnetized plasmas including the solar corona. In 2011, Foullon et al. [1] have reported the

first observations of the temporally and spatially resolvedevolution of the magnetic Kelvin–

Helmholtz (KH) instability, developing at the surface of a fast CME less than 150 Mm above

the solar surface in the inner corona. Unprecedented high-resolution imaging observations of

vortices developing at the surface of a fast coronal mass ejecta were taken with the Atmo-

spheric Imaging Assembly (AIA) on board theSolar Dynamics Observatory(SDO), validat-

ing theories of the nonlinear dynamics involved. An updatedand detailed study by Foullon et

al. [2] of the dynamics and origin of the CME on 2010 November 3 by means of the Solar

TErrestrial RElations Observatory Behind (STEREO-B) located eastward ofSDO by 82◦ of

heliolongitude, and used in conjunction withSDOgive some indication of the magnetic field

topology and flow pattern. At the time of the event, Extreme Ultraviolet Imager (EUVI) from

STEREO’s Sun–Earth Connection Coronal and Heliospheric Investigation (SECCHI) instru-

ment suite achieved the highest temporal resolution in the 195 Å bandpass: EUVI’s images of

the active region on the disk were taken every 5 minutes in this bandpass. The authors applied

the Differential Emission Measure (DEM) techniques on the edge of the ejecta to determine the

basic plasma parameters – they obtained electron temperature of 11.6±3.8 MK and electron

densityn= (7.1±1.6)×108 cm−3, together with a layer width of∆L = 4.1±0.7 Mm. Density

estimates of the ejecta environment (quiet corona) vary from (2 to 1)×108 cm−3 between 40

and 100 Mm, at heights where the authors started to see the KH waves developing. The final

estimation based on a maximum height of 250 Mm and the highestDEM value on the northern

flank of the ejecta yields electron density of(7.1±0.8)×108 cm−3. The adopted electron tem-

perature in the ambient corona isT = 4.5±1.5 MK. The other important parameters derived
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by using the pressure balance equation assuming a benchmarkvalue for the magnetic fieldB

in the environment of 10 G are summarized in Table 2. The main features of the imaged KH

instability presented on Table 3 include (in their notation) the speed of 131 Å CME leading

edge,VLE = 687 km s−1, flow shear on the 131 Å CME flank,V1−V2 = 680±92 km s−1, KH

group velocity,vg = 429± 8 km s−1, KH wavelength,λ = 18.5± 0.5 Mm, and exponential

linear growth rate,γKH = 0.033±0.012 s−1.

The aim of this study is to model the imaged/registered KH instability via investigating the

propagation of MHD waves along the ejecta. Our frame of reference for studying the wave

propagation in the jet is attached to the surrounding magnetoplasma – thusv0 = V i −Ve is

that velocity shear which can allow the instability developing. Recall that the magnetic KH

instability occurs on an interface between two plasma regions in sheared flow, when the ve-

locity shear become larger than a critical value. One important parameter in our modeling is

the density contrast,η = ρe/ρi , whereρi and ρe are the homogeneous plasma densities in-

side and outside the ejecta. Our choice of that parameter isη = 0.88, which corresponds to

electron densitiesni = 8.7×108 cm−3 andne = 7.67×108 cm−3, respectively. As seen from

Table 2 in Foullon et al. [2], the two plasma betas are correspondingly βi = 1.5± 1.01 and

βe = 0.21±0.05. It is clear, that in the first approximation, the jet’s plasma can be considered

as an incompressible medium while the environment might be treated as a cool plasma (βe= 0).

If we steel keepβi = 1.5, and fix the Alfvén speed to bevAe
∼= 787 km s−1 (i.e., the value cor-

responding tone = 7.67× 108 cm−3 and magnetic field of 10 G), the total pressure (sum of

thermal and magnetic pressure) balance equation atη = 0.88 requires a sound speed inside the

jet csi
∼= 523 km s−1 and Alfvén speedvAi

∼= 467 km s−1 (more exactly, 467.44 km s−1), which

means that the magnetic field in the flux tube is 6.3 G.

Geometry and MHD wave dispersion relation We consider a magnetic flux tube of radius

a= ∆l/2 embedded in a uniform field environment. The magnetic field inside the tube is heli-

coidal, with uniform twist, i.e.,Bi = (0,Ar,Biz), whereA andBiz are constants. The magnetic

field outside the tube is directed along the z-axis,Be = (0,0,Be). We consider the mass flow

v0 = (0,0,v0) to be along thez-axis. For studying the MHD wave propagation, we can use the

dispersion relation of the normal modes propagating along atwisted magnetic tube of incom-

pressible plasma with axial mass flowv0, surrounded by incompressible ionized medium [3], by

adapting that equation to our case of cool environment, i.e., by changing the argument of Bessel
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function associated with that medium only. Accordingly, the modified dispersion equation is
[
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are squared wave attenuation coefficients of surface modes in both media. It is seen from Eq. (1)

that the wave frequency in the moving media is Doppler shifted.

Numerical solutions and results Before starting the numerical solving Eq. (1), one needs a

normalization of all velocities and Alfvén frequencies with respect to the Alfvén speedvAi =

Biz/
√µρi , and the wavelengthλ = 2π/kz to the tube radiusa, or equivalently introducing

a dimensionless wavenumberkza. In particular, the normalized jet speedv0/vAi defines the

Alfvén Mach numberMA, while the normalization ofωAe requires the ratiob≡ Be/Biz = 1.58

and already introduced density contrastη = 0.88. We note also that the normalization ofωAi

needs a new input parameter, notably the magnetic field twist, ε = Biφ/Biz. With these input

parameters (MA will be varied during computations) the solutions to the dispersion equation

yield the dependence of the normalized wave phase velocityω/kzvAi on kza. We have studied

the wave propagation for three values ofε = 0.025, 0.1, and 0.2. It turns out that the threshold

Alfvén Mach numbers (and respectively the critical jet’ speeds) of the kink (m= 1) mode are

rather high to provide the occurrence of KH instability. Fortunately, the picture dramatically

changes for them= −2 MHD mode. As seen from Fig. 1, one can observe the appearance

of three instability windows on thekza-axis. The width of each instability window depends

upon the value of the twist parameterε; the narrowest window corresponds toε = 0.025, and

the widest one toε = 0.2. It is worth noticing that the phase velocities of unstablem= −2

MHD waves are very close to the jet speeds (in the right panel of Fig. 1 one sees that the

normalized wave phase velocity on given dispersion curve isapproximately equal to its label

41st EPS Conference on Plasma Physics P4.134



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Im
(v

ph
/v

A
i)

kza

m = -2ε = 0.025

ε = 0.1 ε = 0.2

MA = 1.5

MA = 1.475 MA = 1.45

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

R
e(

v p
h/

v A
i)

kza

m = -2
ε = 0.025
MA = 1.5

ε = 0.1
MA = 1.475

ε = 0.2
MA = 1.45

Figure 1: (Left panel) Growth rates of unstablem= −2 MHD mode in three instability windows. The

best fit to the observational data one obtains atkza= 0.7156, for which value the normalized wave growth

rate is equal to 0.2168. (Right panel) Dispersion curves of unstablem=−2 MHD waves forε = 0.025,

0.1, and 0.2. The normalized phase velocity atkza= 0.7156 is equal to 1.4455.

MA). All critical Alfvén Mach numbers yield acceptable threshold speeds of the ejecta which

ensure the occurrence of KH instability – these speeds are equal to 701 km s−1, 689 km s−1,

and 678 km s−1, respectively, in a very good agreement with the speed of 680km s−1 found by

Foullon et al. [2]. The best fit to the data listed in Table 3 in [2], however, yieldskza= 0.7156

with Im(vph/vAi ) = 0.2168 in the third instability window (see the left panel of Fig. 1), which

means that the computed wavelength isλ = 18 Mm, and wave growth rateγKH = 0.035 s−1.

Conclusion Our study shows that the imaged by Foullon et al. [2] KH instability can be ex-

plained in terms of such instability arising during the propagation of them= −2 MHD mode

on a cylindrical jet contained in a twisted magnetic flux tubewith twist parameterε = 0.2 at

a critical speed of 678 km s−1, as the wavelength of unstable mode is equal to 18 Mm and its

growth rate to 0.035 s−1, in very good agreement with the data of Foullon et al. [2]. Wenote

also, that the computed from Fig. 1 (right panel) wave phase velocity of 676 km s−1 is rather

close to the speed of the 131 Å CME leading edge equal to 687 km s−1. The two “cross points”

in Fig. 1 can be considered as a ‘computational portrait’ of the imaged in the 2010 November 3

coronal mass ejecta Kelvin–Helmholtz instability.
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