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Abstract 

It is shown that regarding high-frequency perturbations the pre-sheath is stable. The stability 

problem for low-frequency perturbations can be reduced to analysing a “diffusion-type” 

equation, with the result that the potential distribution is weakly unstable. 

1. In the papers on weakly ionized plasma-wall transition (PWT) layers (plasma 

boundary layers) published until now, only the time-independent ( 0/ =∂∂ t ) states of 

these layers have been studied while, to the best of our knowledge, their stability 

properties have been left out of consideration.  Analytic description of a PWT layer as a 

whole single unit is quite unwieldy due to the mathematical difficulties involved.  

Therefore, a PWT layer is usually split into two sub-layers: a quasi-neutral, collisional pre-

sheath (PS) (with the characteristic scale length l , the smallest relevant collision-related 

length) and the Debye sheath (DS) (with the scale length Dλ , the electron Debye length at the 

sheath entrance). This subdivision ensues naturally in the “asymptotic two-scale (a2s) limit” 

0/ →≡ lDλε  [1] and allows one to investigate some aspects of the PS and the DS separately 

from each other. 

Here, in particular, we consider the stability problem for the one-dimensional, symmetric 

Tonks-Langmuir (T&L) discharge model (see Fig. 1), for which the analytic solutions of the 

time-independent states are well-known [1]. The plasma, consisting of Boltzmann-distributed 

electrons with constant temperature eT  and singly charged ions, is bounded on both sides by 

absorbing walls located at Lz ±= , and biased negatively at floating potential. The ion 

kinetics is governed by electron-impact ionization of a cold, uniformly distributed neutral-gas 

background.  With the dimensionless potential, velocity, time, distribution function and 

densities 

 eTe /φϕ −= ( ) vcv s →/ ,  ttpi →ω ,  ( ) ffnc is =02/ ,  ( ) lcsi /1/ =ν ,   ( ) eiei nnn ,0, / ⇒ , 

the ion Boltzmann equation and Poisson’s equation can be written in the form 
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Here, ( )0
2

0 / neTeD ελ = ,  ies mTc /= , 0n is the density in the centre of the discharge, iν  is the 

“ionization frequency” (the average number of ionizations an electron causes per second),  

iscl ν/≡  is the “ionization length”, ( )vδ  is the Dirac δ  function (representing the velocity 

distribution of the immobile neutrals), and. Following the common procedure of stability 

analysis, we decompose the distribution function (DF) ( )vztf ,,  and the electric potential 

( )zt,ϕ  into their unperturbed values and time-dependent perturbations,  

 ( ) ( )vztfvzff ,,, δ+= ,        ( ) ( )ztz ,δϕϕϕ += ,       ( ff <<δ ,   ϕδϕ << ), (2a,b)  

where ( )vzf , and ( )zϕ  obviously describe the unperturbed time-independent state. 

2. For describing the time-independent PS, we introduce the dimensionless coordinate lzx /=  

(“PS scale”), with which Eqs. (1a,b) become 
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In the PS the parameter lD /λε ≡  is assumed to be 

small and the a2s limit 0→ε  allows us to consider 

the PS as an independent quasi-neutral region [1]. 

Solving Eq. (3a) first, we have to distinguish the 

cases with positive ( 0>v ) and negative ( 0<v ) 

velocities and consequently consider these cases 

separately in the usual coordinate space, 0<x  and 

0<x  (see Fig. 1). With the quasi-neutrality 

condition ei nn =  we have from (3a) [1] 
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with ( )sH  the Heaviside step function. The Poisson equation containing the perturbations, the 
characteristic scale length of which is assumed to be Dλ , has the form 

           ).(22
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Fig.1. Geometry of the system. 
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with  Dz λξ =  (“DS scale”). Neglecting the terms of the order of the small ratio lD /λ  and 

requiring the perturbations to vanish at −∞→= 0tt , we obtain for the ion-DF perturbation 
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ϕδ ,   where ( ) ( ) dssdfsf /=′ . (6) 

3. In our case we can apply methods of geometrical optics because the scale length of the 

perturbations is much smaller than that of the unperturbed medium, lD <<λ . With the Fourier 

transformation ( ) ( ) tiikekt ωξωϕξδϕ −⋅⇒ ,, , Eqs. (5) and (6) lead to the eikonal equation 
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where the operator P  prescribes that the principal value is to be taken. The solutions ω  of 

this equation are the eigenfrequencies of the system and are in general complex ( γωω i+⇒ , 

ωγ << ), with the real part ω  the oscillation frequency and the imaginary part γ  the growth 

rate of the perturbations. These real and imaginary parts are found from [2, 3] 

 ( )∫ =⋅
2

1

,Re
x

x

Nxkdx πω , ,1>>N        ( ) ( )
1

,Re,Im
2

1

2

1

−













∂
∂

⋅












−= ∫∫ xkdxxkdx
x

x

x

x

ω
ω

ωγ  (8a,b) 

4. (i) In the high-frequency range ( ϕω 2/ 22 >>k ), the simplified dispersion relation (7) is 

similar to the relation given in [2] (see Eq. (8.49) there). Straightforward calculations show 

that 0<γ  so the high-frequency perturbations are damped 

(ii) Applying the eikonal and quantization equations (7) and (8) to low-frequency 

perturbations ( 1/ <<kω ) we find  
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 (9a,b)  

From these relations we conclude: (a) In the low-frequency range the system has no 

eigenfrequencies and hence cannot be described in the framework of common geometrical 

optics; (b) Equation (9b) indicates that, according to (6), at phase velocities close to ϕ2 ,  

ϕω 2Re/ ≈k , the imaginary part of the frequency can become positive, 0>γ , and even 

tend to the infinity, ∞→γ , so the perturbations can be unstable.  
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5.  In the limit of smooth time dependence, when ( ) ( )2222 // ξδϕδϕ ∂∂<<∂∂ t , Eqs. (5)-(6) can 

be reduced to the “diffusion -like” form 
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which is in accordance with Eq. (9a). The solution of (10) is 
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  are the Fresnel integrals. To simplify the analysis we consider two 

particular cases:  (a)  At 0=t  the potential perturbation is localized in a narrow region and its 

time derivative there is zero, ( ) ( )00, ξξδξδϕ −⋅= a  and ( ) 00, =ξϕδ  . From Eq. (11) we find 
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Hence, the potential perturbation executes oscillations with decreasing amplitude.  (b) Quite 

different behaviour is observed if at 0=t  the potential suffers a blow at some definite point, 

( ) ( )00, ξξδξϕδ −⋅= a ,  whereas the initial potential perturbation itself is zero,  ( ) 00, =ξδϕ . 

From (11) we then have 
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Hence, the amplitude of the perturbation grows proportionally to t . 
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