

Stability of the pre-sheath in the Tonks-Langmuir discharge

D. D. Tskhakaya (sr.)^{1,2}, L. Kos³, and S. Kuhn¹

¹ Association EURATOM-ÖAW, Inst. for Theoretical Physics, Univ. of Innsbruck, Austria

² Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi, Georgia

³ Association EURATOM-SFA, Faculty of Mech. Eng., University of Ljubljana, Slovenia

Abstract

It is shown that regarding high-frequency perturbations the pre-sheath is stable. The stability problem for low-frequency perturbations can be reduced to analysing a “diffusion-type” equation, with the result that the potential distribution is weakly unstable.

1. In the papers on weakly ionized plasma-wall transition (PWT) layers (plasma boundary layers) published until now, only the time-independent ($\partial/\partial t = 0$) states of these layers have been studied while, to the best of our knowledge, their stability properties have been left out of consideration. Analytic description of a PWT layer as a whole single unit is quite unwieldy due to the mathematical difficulties involved. Therefore, a PWT layer is usually split into two sub-layers: a quasi-neutral, collisional pre-sheath (PS) (with the characteristic scale length l , the smallest relevant collision-related length) and the Debye sheath (DS) (with the scale length λ_D , the electron Debye length at the sheath entrance). This subdivision ensues naturally in the “asymptotic two-scale (a2s) limit” $\varepsilon \equiv \lambda_D/l \rightarrow 0$ [1] and allows one to investigate some aspects of the PS and the DS separately from each other.

Here, in particular, we consider the stability problem for the one-dimensional, symmetric Tonks-Langmuir (T&L) discharge model (see Fig. 1), for which the analytic solutions of the time-independent states are well-known [1]. The plasma, consisting of Boltzmann-distributed electrons with constant temperature T_e and singly charged ions, is bounded on both sides by absorbing walls located at $z = \pm L$, and biased negatively at floating potential. The ion kinetics is governed by electron-impact ionization of a cold, uniformly distributed neutral-gas background. With the dimensionless potential, velocity, time, distribution function and densities

$$\bar{\varphi} = -e\phi/T_e (v/c_s) \rightarrow v, \quad \omega_{pi}t \rightarrow t, \quad (c_s/\sqrt{2}n_0)f_i = \bar{f}, \quad (v_i/c_s) = 1/l, \quad (n_{i,e}/n_0) \Rightarrow n_{i,e},$$

the ion Boltzmann equation and Poisson’s equation can be written in the form

$$\frac{1}{\lambda_D} \frac{\partial \bar{f}}{\partial t} + v \frac{\partial \bar{f}}{\partial z} + \frac{\partial \bar{\varphi}}{\partial z} \frac{\partial \bar{f}}{\partial v} = \frac{1}{\sqrt{2}l} e^{-\bar{\varphi}} \delta(v), \quad \lambda_D^2 \frac{\partial^2 \varphi}{\partial z^2} = n_i - n_e. \quad (1a,b)$$

Here, $\lambda_D = \sqrt{\epsilon_0 T_e / (e^2 n_0)}$, $c_s = \sqrt{T_e / m_i}$, n_0 is the density in the centre of the discharge, v_i is the “ionization frequency” (the average number of ionizations an electron causes per second), $l \equiv c_s / v_i$ is the “ionization length”, $\delta(v)$ is the Dirac δ function (representing the velocity distribution of the immobile neutrals), and. Following the common procedure of stability analysis, we decompose the distribution function (DF) $\bar{f}(t, z, v)$ and the electric potential $\bar{\varphi}(t, z)$ into their unperturbed values and time-dependent perturbations,

$$\bar{f} = f(z, v) + \delta f(t, z, v), \quad \bar{\varphi} = \varphi(z) + \delta \varphi(t, z), \quad (\delta f \ll f, \quad \delta \varphi \ll \varphi), \quad (2a,b)$$

where $f(z, v)$ and $\varphi(z)$ obviously describe the unperturbed time-independent state.

2. For describing the time-independent PS, we introduce the dimensionless coordinate $x = z / l$ (“PS scale”), with which Eqs. (1a,b) become

$$v \frac{\partial f}{\partial x} + \frac{\partial \varphi}{\partial x} \frac{\partial f}{\partial v} = \frac{1}{\sqrt{2}} e^{-\varphi} \delta(v), \quad \epsilon^2 \frac{\partial^2 \varphi}{\partial x^2} = n_i - n_e \quad (3a,b)$$

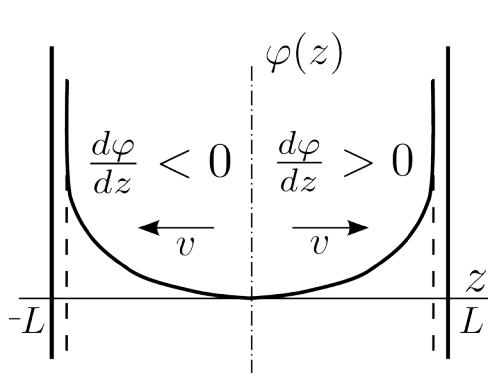


Fig.1. Geometry of the system.

In the PS the parameter $\epsilon \equiv \lambda_D / l$ is assumed to be small and the a2s limit $\epsilon \rightarrow 0$ allows us to consider the PS as an independent quasi-neutral region [1]. Solving Eq. (3a) first, we have to distinguish the cases with positive ($v > 0$) and negative ($v < 0$) velocities and consequently consider these cases separately in the usual coordinate space, $x < 0$ and $x > 0$ (see Fig. 1). With the quasi-neutrality condition $n_i = n_e$ we have from (3a) [1]

$$f(\varphi, v) = \frac{1}{\pi} \frac{\partial}{\partial \varphi} F\left(\sqrt{\varphi - \frac{v^2}{2}}\right) \cdot H\left(\varphi - \frac{v^2}{2}\right), \quad \text{with} \quad F(\sqrt{s}) = e^{-s} \int_0^{\sqrt{s}} dt \cdot e^{t^2}, \quad (4)$$

with $H(s)$ the Heaviside step function. The Poisson equation containing the perturbations, the characteristic scale length of which is assumed to be λ_D , has the form

$$\frac{\partial^2}{\partial \xi^2} \delta \varphi = \sqrt{2} \int_{-\infty}^{\infty} dv \cdot \delta f + \delta n_e(\xi, t), \quad (5)$$

with $\xi = z/\lambda_D$ (“DS scale”). Neglecting the terms of the order of the small ratio λ_D/l and requiring the perturbations to vanish at $t = t_0 \rightarrow -\infty$, we obtain for the ion-DF perturbation

$$\delta f = v \cdot f'(\varphi - v^2/2) \cdot \frac{\partial}{\partial \xi} \int_{t_0 \rightarrow -\infty}^t dt' \cdot \delta \varphi \{\xi - v(t-t'), t'\}, \quad \text{where } f'(s) = df(s)/ds. \quad (6)$$

3. In our case we can apply methods of geometrical optics because the scale length of the perturbations is much smaller than that of the unperturbed medium, $\lambda_D \ll l$. With the Fourier transformation $\delta \varphi(\xi, t) \Rightarrow \varphi(k, \omega) \cdot e^{ik\xi - i\omega t}$, Eqs. (5) and (6) lead to the eikonal equation

$$k^2(\omega, x) = -i\pi\sqrt{2} \frac{\omega}{k} f'(\varphi(x) - \omega^2/2k^2) + \sqrt{2}P \int_{-\infty}^{\infty} dv \frac{v f'(\varphi(x) - v^2/2)}{(\omega/k) - v} - e^{-\varphi(x)} \left\{ 1 - \mathfrak{I}_+(\omega/k) \sqrt{m_e/m_i} \right\}; \quad \mathfrak{I}_+(s) = \frac{1}{\sqrt{2\pi}} s \int_{-\infty}^{\infty} \frac{e^{-z^2/2} dz}{s + i\delta - z}, \quad \delta \rightarrow +0, \quad (7)$$

where the operator P prescribes that the principal value is to be taken. The solutions ω of this equation are the eigenfrequencies of the system and are in general complex ($\omega \Rightarrow \omega + i\gamma$, $\gamma \ll \omega$), with the real part ω the oscillation frequency and the imaginary part γ the growth rate of the perturbations. These real and imaginary parts are found from [2, 3]

$$\int_{x_1}^{x_2} dx \cdot \text{Re}k(\omega, x) = N\pi, \quad N \gg 1, \quad \gamma = - \left\{ \int_{x_1}^{x_2} dx \text{Im}k(\omega, x) \right\} \cdot \left\{ \int_{x_1}^{x_2} dx \frac{\partial}{\partial \omega} \text{Re}k(\omega, x) \right\}^{-1} \quad (8a,b)$$

4. (i) In the high-frequency range ($\omega^2/k^2 \gg 2\varphi$), the simplified dispersion relation (7) is similar to the relation given in [2] (see Eq. (8.49) there). Straightforward calculations show that $\gamma < 0$ so the high-frequency perturbations are damped

(ii) Applying the eikonal and quantization equations (7) and (8) to low-frequency perturbations ($\omega/k \ll 1$) we find

$$(\text{Re}k)^4 = e^{-\varphi} \omega^2, \quad \text{Im}k = -\frac{\omega \cdot e^{-\varphi(x)}}{2(\text{Im}k)^3} \left\{ \frac{\pi}{\sqrt{2}} e^{-\varphi(x)} (\text{Re}k) \cdot f' \left(\varphi(x) - \frac{v^2}{2} \right) + \frac{1}{2} \sqrt{\frac{\pi}{2}} (\text{Re}k) \sqrt{\frac{m_e}{m_i}} \right\}. \quad (9a,b)$$

From these relations we conclude: (a) In the low-frequency range the system has no eigenfrequencies and hence cannot be described in the framework of common geometrical optics; (b) Equation (9b) indicates that, according to (6), at phase velocities close to $\sqrt{2\varphi}$, $\omega/\text{Re}k \approx \sqrt{2\varphi}$, the imaginary part of the frequency can become positive, $\gamma > 0$, and even tend to the infinity, $\gamma \rightarrow \infty$, so the perturbations can be unstable.

5. In the limit of smooth time dependence, when $(\partial^2 \delta\varphi / \partial t^2) \ll (\partial^2 \delta\varphi / \partial \xi^2)$, Eqs. (5)-(6) can be reduced to the “diffusion -like” form

$$\frac{\partial^4 \delta\varphi}{\partial \xi^4} = -\frac{\partial^2 \delta\varphi}{\partial t^2}, \quad (10)$$

which is in accordance with Eq. (9a). The solution of (10) is

$$\begin{aligned} \delta\varphi(\xi, t) = & \frac{1}{2\sqrt{2\pi \cdot t}} \int_{-\infty}^{\infty} d\xi' \delta\varphi(\xi', 0) \cdot \left\{ \cos \frac{(\xi - \xi')^2}{4t} + \sin \frac{(\xi - \xi')^2}{4t} \right\} \\ & + \sqrt{\frac{t}{2\pi}} \int_{-\infty}^{\infty} d\xi' \delta\dot{\varphi}(\xi', 0) \cdot \left\{ \cos \frac{(\xi - \xi')^2}{4t} + \sin \frac{(\xi - \xi')^2}{4t} + \frac{|\xi - \xi'|}{2\sqrt{t}} \sqrt{2\pi} \left[S\left(\frac{\xi - \xi'}{2\sqrt{t}}\right) - C\left(\frac{\xi - \xi'}{2\sqrt{t}}\right) \right] \right\}, \end{aligned} \quad (11)$$

where $\delta\varphi(\xi, 0) = \delta\varphi(\xi, t)|_{t=0}$, $\delta\dot{\varphi}(\xi, 0) = (\partial \delta\varphi(\xi, t) / \partial t)|_{t=0}$, and $S(s) = \sqrt{\frac{2}{\pi}} \int_0^s ds \cdot \sin(s^2)$,

$C(s) = \sqrt{\frac{2}{\pi}} \int_0^s ds \cdot \cos(s^2)$ are the Fresnel integrals. To simplify the analysis we consider two

particular cases: **(a)** At $t = 0$ the potential perturbation is localized in a narrow region and its time derivative there is zero, $\delta\varphi(\xi, 0) = a \cdot \delta(\xi - \xi_0)$ and $\delta\dot{\varphi}(\xi, 0) = 0$. From Eq. (11) we find

$$\delta\varphi(\xi, t) = \frac{a}{2\sqrt{\pi \cdot t}} \left\{ \cos \frac{(\xi - \xi_0)^2}{4t} - \frac{\pi}{4} \right\}, \quad t > 0. \quad (12)$$

Hence, the potential perturbation executes oscillations with decreasing amplitude. **(b)** Quite different behaviour is observed if at $t = 0$ the potential suffers a blow at some definite point, $\delta\varphi(\xi, 0) = \bar{a} \cdot \delta(\xi - \xi_0)$, whereas the initial potential perturbation itself is zero, $\delta\dot{\varphi}(\xi, 0) = 0$.

From (11) we then have

$$\delta\varphi(\xi, t) = \bar{a} \sqrt{\frac{t}{2\pi}} \left\{ \cos \frac{(\xi - \xi_0)^2}{4t} + \sin \frac{(\xi - \xi_0)^2}{4t} \right\} + \frac{|\xi - \xi_0|}{2\sqrt{t}} \sqrt{2\pi} \left\{ S\left(\frac{\xi - \xi_0}{2\sqrt{t}}\right) - C\left(\frac{\xi - \xi_0}{2\sqrt{t}}\right) \right\}. \quad (13)$$

Hence, the amplitude of the perturbation grows proportionally to \sqrt{t} .

This work was partly supported by the European Commission under (i) the Contract of Association between EURATOM and the Austrian Academy of Sciences and (ii) Slovenian Contract no. FU06-CT-2007-00065, and by the Austrian Science Fund (FWF) under project P22345-N16. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- [1] K.-U. Riemann, Phys. Plasmas **13**, 063508 (2006).
- [2] A. F. Alexandrov, L. S. Bogdankevich, and A. A. Ruchadze, “*Principles of Plasma Electrodynamics*” (Springer, Berlin, 1984), pp. 77-80 and 243-265.
- [3] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics. Nonrelativistic theory” (Pergamon, Oxford, 2003).