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Abstract

It is shown that regarding high-frequency perturbations the pre-sheath is stable. The stability
problem for low-frequency perturbations can be reduced to analysing a “diffusion-type”

equation, with the result that the potential distribution is weakly unstable.

1. In the papers on weakly ionized plasma-wall transition (PWT) layers (plasma
boundary layers) published until now, only the time-independent (0/0t =0) states of
these layers have been studied while, to the best of our knowledge, their stability
properties have been left out of consideration. Analytic description of a PWT layer as a
whole single unit is quite unwieldy due to the mathematical difficulties involved.
Therefore, a PWT layer is usually split into two sub-layers: a quasi-neutral, collisional pre-
sheath (PS) (with the characteristic scale length /, the smallest relevant collision-related
length) and the Debye sheath (DS) (with the scale length 4, , the electron Debye length at the
sheath entrance). This subdivision ensues naturally in the “asymptotic two-scale (a2s) limit”
g=4,/1—0 [1] and allows one to investigate some aspects of the PS and the DS separately

from each other.

Here, in particular, we consider the stability problem for the one-dimensional, symmetric
Tonks-Langmuir (T&L) discharge model (see Fig. 1), for which the analytic solutions of the
time-independent states are well-known [1]. The plasma, consisting of Boltzmann-distributed

electrons with constant temperature 7, and singly charged ions, is bounded on both sides by

absorbing walls located at z==+L, and biased negatively at floating potential. The ion
kinetics is governed by electron-impact ionization of a cold, uniformly distributed neutral-gas
background. With the dimensionless potential, velocity, time, distribution function and

densities
G=—epIT,(vic)>v, op—t, (/N2 =7, (viie)=1/1, (n,,/n))=n,.,,

the ion Boltzmann equation and Poisson’s equation can be written in the form
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Here, A, =+/&,T,/ iezn0 i, c, = W , n,1s the density in the centre of the discharge, v, is the
“ionization frequency” (the average number of ionizations an electron causes per second),
[=c, /v, is the “ionization length”, §(v) is the Dirac 6 function (representing the velocity
distribution of the immobile neutrals), and. Following the common procedure of stability
analysis, we decompose the distribution function (DF) f (t,z,v) and the electric potential

(¢, z) into their unperturbed values and time-dependent perturbations,

f=flzv)+dtzy), @=9(z)+dp(tz), (F<<f, dp<<p), (2ab)

where f(z,v)and ¢(z) obviously describe the unperturbed time-independent state.

2. For describing the time-independent PS, we introduce the dimensionless coordinate x = z//

(“PS scale”), with which Egs. (1a,b) become

L2 T st 20, (3a.b)

In the PS the parameter ¢ =4,// is assumed to be

i QO(Z) small and the a2s limit & — 0 allows us to consider

) <0 i dyp > 0 the PS as an independent quasi-neutral region [1].

dz @ dz Solving Eq. (3a) first, we have to distinguish the

: - i v : cases with positive (v>0) and negative (v<0)

T : : : f velocities and consequently consider these cases

! : ' separately in the usual coordinate space, x <0 and

Fig.1. Geometry of the system. x<0 (see Fig. 1). With the quasi-neutrality
condition n, =n, we have from (3a) [1]

f(go,v):%%F( ¢—§J-H(¢—§J, with F(\/E):e_sfdt-e’z , @)

with H (s) the Heaviside step function. The Poisson equation containing the perturbations, the
characteristic scale length of which is assumed to be 4, , has the form

82
o0&’

Sp=~2 ]odv-5f+5ne(§.t), (5)
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with &=2z/4, (“DS scale”). Neglecting the terms of the order of the small ratio 4,/ and

requiring the perturbations to vanish at ¢ = ¢, — —co, we obtain for the ion-DF perturbation

F =v-flp—v*12). % jdt’ Splé —v(t 1)), where ['(s)=df(s)/ds. (6)

[

3. In our case we can apply methods of geometrical optics because the scale length of the

perturbations is much smaller than that of the unperturbed medium, A, <</. With the Fourier

transformation 5p(&,1)= p(k,)- ™7™, Egs. (5) and (6) lead to the eikonal equation

K (@,x)=~iz2 % Io(x)-o® 12k7) + \/EPZ v ((q;(;‘]z)__vi/ 2)_ (7)

S+id—z

o0

—e PN =3 ((w/kWm, Im, )} ; 3+(s)=\/;—sT el s,
7w

where the operator P prescribes that the principal value is to be taken. The solutions @ of

this equation are the eigenfrequencies of the system and are in general complex (o = w +iy,
y << @), with the real part @ the oscillation frequency and the imaginary part y the growth

rate of the perturbations. These real and imaginary parts are found from [2, 3]

-1
[dx-Rek(w,x)=Nz, N>>1,  y= —{Idx Imk(a),x)} : { | dxaiRek(w,x)} (8a,b)
a

4. (i) In the high-frequency range (@’ /k> >>2¢), the simplified dispersion relation (7) is
similar to the relation given in [2] (see Eq. (8.49) there). Straightforward calculations show

that y <0 so the high-frequency perturbations are damped

(ii) Applying the eikonal and quantization equations (7) and (8) to low-frequency
perturbations (@/k << 1) we find

L

L -olx) 2
(Rek)' =e’w®, Imk = —a’e—{%ﬂ(”(Re k)- f’[(p(x)— %] + %\/%(Re k) ’:1 } (9a,b)

2(imk)
From these relations we conclude: (a) In the low-frequency range the system has no

eigenfrequencies and hence cannot be described in the framework of common geometrical

optics; (b) Equation (9b) indicates that, according to (6), at phase velocities close to +/2¢,

w/Rek =,/2¢ , the imaginary part of the frequency can become positive, y >0, and even

tend to the infinity, y — oo, so the perturbations can be unstable.
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5. In the limit of smooth time dependence, when (9°5p/6r* )<< (66 /&), Egs. (5)-(6) can

be reduced to the “diffusion -like” form

d'6p _ 0’5p
oet = ek

(10)
which is in accordance with Eq. (9a). The solution of (10) is

U fasse(z0)deos E=E) | ginE=ET
_2\/%__[?’5&0(5,0) {cos 1 + Sin 4 Y

\/7Id§'5 (£.0)- {COS(SE T sinle § |§\/§|‘/_{ (é:\/;&j (ifﬂ}

where  5p(£,0)=6p(&,t) . 6¢(£,0)=(060(£ 1)/ ar) ,, and S(s)=\Ejds-Sin(s2)
7[0

Sp(&.t)

C (s)= \/EJ. ds - Cos(sz) are the Fresnel integrals. To simplify the analysis we consider two
T

particular cases: (a) At ¢ =0 the potential perturbation is localized in a narrow region and its

time derivative there is zero, 5go(§,0) =a-0 (é‘ - g“o) and 5¢)(§,0) =0. From Eq. (11) we find

__a (5_50)2 T
5¢(§,t)—2\/ﬁ.t{cos py 4}, t>0. (12)

Hence, the potential perturbation executes oscillations with decreasing amplitude. (b) Quite
different behaviour is observed if at # =0 the potential suffers a blow at some definite point,

5p(£,0)=a-5(£—&,), whereas the initial potential perturbation itself is zero, J¢(&,0)=

From (11) we then have

5(p(§,t)=c7\/;{cos%+&n§ &) } |§ f("\/_{ (if“j—(:(ifO} (13)

Hence, the amplitude of the perturbation grows proportionally to Jt
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