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1. Introduction

Alfvén cyclotron instabilities (ACI) driven by energy gradients of fast ions have been
observed as lon Cyclotron Emission on major conventional tokamaks [1-5], and as
Compressional Alfvén Eigenmodes (CAEs) and Global Alfvén Eigenmodes (GAES) on
spherical tokamaks NSTX [6] and MAST [7,8]. These instabilities are of interest for
diagnosing fusion products, and they may affect the efficiency of beam current drive by
causing pitch-angle scattering higher than Coulomb collisions. In view of deuterium-tritium
(DT) operation required for burning plasmas, studies of Alfvén cyclotron instabilities in
plasmas with two main bulk ion species are highly relevant. Properties of ACI in the

frequency range @y < @ < wy, are of particular interest due to the ion-ion resonance at

some radius in the plasma core,
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where @,; and wg are ion plasma frequency and ion cyclotron frequencies of ions i.

Experimental studies of beam-driven ACI in plasmas consisting of two main ion species, D

and H, were performed on MAST mimicking the ACI in D-T plasmas.
2. The MAST H-D experiment and isotopic composition measurements

Alfvén cyclotron instabilities were excited by super-Alfvénic D beam with energy E, = 70-
74 keV injected into spherical tokamak MAST (a~ 0.65 m, R~ 0.85 m) with hydrogen-
deuterium (HD) plasmas at low magnetic field, Bt(0) =~ 0.31T - 0.44T. All MAST
discharges had the same scenario, with H/D concentration being the only parameter varied.
Plasmas with range of H/D concentrations from 0% to >60% were produced by puffing H
for different time intervals, from the low field side of the machine, at a constant D puff at

the high field side as Figure 1 shows. The H/D concentration was diagnosed by using i)
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H./D, intensity ratio, ii) fission chamber measuring neutron rate from D-D reactions, and
iii) neutron camera with four lines-of-sight at different radial positions. TRANSP analysis
was performed showing the effect of H dilution on DD neutron rate so the D:H mix could
be estimated accurately [9]. Figure 2 shows the TRANSP results versus fission chamber

measurement of DD neutron rate.
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Figure 2. Neutron Yield (black) measured
Figure 1. From top to bottom: D fuelling rate; H with MAST fission chamber against neutron
fuelling rate; time evolution of ng; time evolution rates computed with TRANSP for different
of DD neutron rate during NBI H:D ratios

For detecting beam-driven ACI, OMAHA coils [7] digitised up to 10 MHz were employed

thus covering the whole ion-ion hybrid frequency range, from ~2 .5 MHz to ~ 5 MHz.
3. The mode observations

In pure D plasmas, Alfvén instabilities were excited over a broadband frequency range, up
to ~3.5 MHz, with two distinct classes of modes (Figure 3): 1) sub-cyclotron modes with
frequencies from ~500 kHz to ~1 MHz, and propagating in counter-NBI, counter-current
direction (toroidal mode numbers n<0), and 2) modes with frequencies from ~500 kHz to
~3.5 MHz, and n>0. The second class of modes has large frequency separation, ~150-230
kHz, between modes of different n’s, and since the highest frequency of these modes
exceeds D cyclotron frequency, the modes are identified as CAEs. It was observed that at
increasing H/D concentration, CAEs are suppressed as Figures 4,5 show. The suppression
effect on CAE is especially strong (CAE disappear) in the frequency range between
cyclotron frequencies of deuterium and hydrogen, wgp < ® < ®gH, Where the ion-ion hybrid

resonance could provide a strong damping.
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Figure 3. Beam-driven ACI Figure 4. Beam-driven ACI Figure 5. Beam-driven ACI
observed in pure D plasma observed in discharge with 60 observed in discharge with
(MAST #30457). ms H puff giving npy/np = 33% longest H puff giving ny/np =
(MAST discharge #30464). 60-80 % (MAST #30471).

In MAST discharge with highest H concentration, modes were detected (Figs.6, 7) at a

frequency of ~4.5 MHz, which is close to hydrogen cyclotron frequency, ® = ®gn.
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Figure 6. Amplitude magnetic spectrogram Figure 7. Phase magnetic spectrogram
showing modes excited by D beam in the showing toroidal mode numbers (dominant
frequency range w = wgy (MAST #30471) n=-3) of the modes shown in Fig.6.

For assessing the properties of the eigenmodes, a simplified 1D “hollow cylinder” model
[10] was used. Within this model, existence and positions of the wave reflection points and

resonance layers were investigated by considering the perpendicular refraction index
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for different concentrations xp =ny/n,=1-x,, (Figure 8 shows an example). The

RZ
quantisation condition IdeR = 72(1 +1/2) was solved then together with condition of a
Ry

weak mode conversion damping determined by the distance from the turning points to the
resonance layers [11]. The modes with lowest damping were then assessed for a

compatibility with the resonance condition [12]
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and it was found (Figure 9) that for low negative n and high hydrogen concentration, a

resonance with relatively low s=4 exists at high frequencies. This could explain the
appearance of the record high frequency modes shown in Figures 6, 7 in MAST plasmas
with highest H/D ratio.

: x, =05 k =i6R; o=12 =
20k 10 Y n)\.’!

§=6 No significant

— resonance
s=4 S= 5
: ‘ l
e}

8

A

ﬂ[) 02

08

0.7 09 11 ] 15 Rlﬁﬂﬁ n@f
Radial position, R (m) elative ion concentration, x

Figure 8. Example of the computed Figure 9. Wave-particle resonances within the

perpendicular refraction index in H-D plasma transparency regions. The regions of lowest
for a given frequency. mode conversion are shown in darker colour.

4. Conclusions

o MAST experiment on beam-driven Alfvén cyclotron instabilities in H-D plasmas
was performed with H/D mix varied from 0 to >60%;

o It was observed that at increasing H/D concentration CAEs are suppressed, with
the strongest effect (CAEs disappear) in the ion-ion hybrid frequency range wgp <
o < opn. Similar effect of CAE suppression in the frequency range wgt < ® < wpp
is expected for D-T plasma;

o Beam-driven modes observed on MAST at a record-high frequency of ~ 5 MHz
(i.e. at ® = opy) could be explained by the H/D mix effect on the wave
transparency region combined with the resonance condition;

e An accurate eigenmode analysis may provide a diagnostic technique for
measuring H/D or D/T mix in the plasma core.
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