

Alfvén cyclotron instabilities in D and H-D plasmas on MAST

S.E.Sharapov, H.J.C.Oliver¹, N.Ben Ayed, M.Cecconello², G.Cunningham,
J.R.Harrison, I.Klimek², R.Akers, and the MAST Team

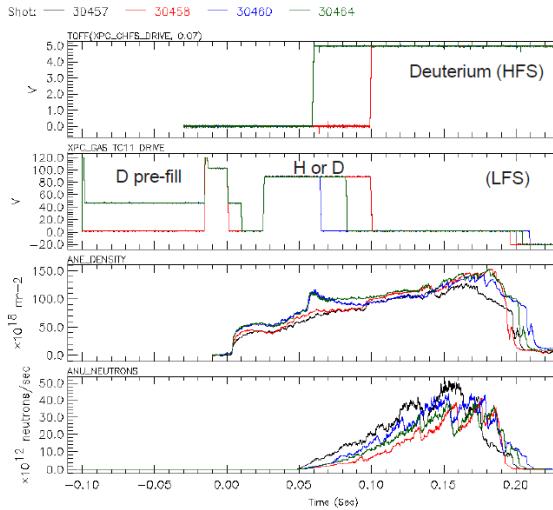
CCFE, Culham Science Centre, Oxfordshire OX14 3DB, UK

¹*H.H.Wills Phys. Lab., Uni. of Bristol, Royal Port, Tyndall Ave., Bristol BS81TL, UK*

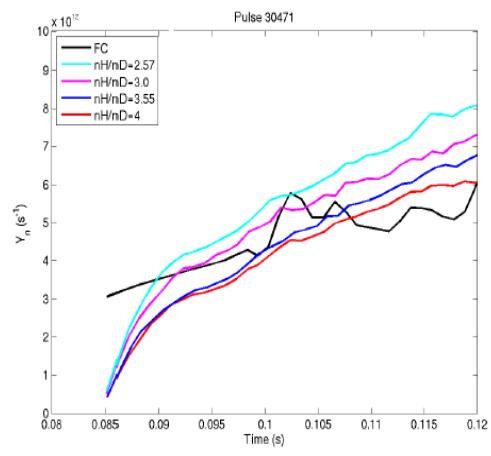
²*Department of Physics and Astronomy, Uppsala Uni., SE-751 05 Uppsala, Sweden*

1. Introduction

Alfvén cyclotron instabilities (ACI) driven by energy gradients of fast ions have been observed as Ion Cyclotron Emission on major conventional tokamaks [1-5], and as Compressional Alfvén Eigenmodes (CAEs) and Global Alfvén Eigenmodes (GAEs) on spherical tokamaks NSTX [6] and MAST [7,8]. These instabilities are of interest for diagnosing fusion products, and they may affect the efficiency of beam current drive by causing pitch-angle scattering higher than Coulomb collisions. In view of deuterium-tritium (DT) operation required for burning plasmas, studies of Alfvén cyclotron instabilities in plasmas with two main bulk ion species are highly relevant. Properties of ACI in the frequency range $\omega_{BT} \leq \omega \leq \omega_{BD}$ are of particular interest due to the ion-ion resonance at some radius in the plasma core,


$$-\frac{\omega_{pD}^2}{\omega^2 - \omega_{BD}^2} - \frac{\omega_{pT}^2}{\omega^2 - \omega_{BT}^2} \cong 0,$$

where ω_{pi} and ω_{Bi} are ion plasma frequency and ion cyclotron frequencies of ions i . Experimental studies of beam-driven ACI in plasmas consisting of two main ion species, D and H, were performed on MAST mimicking the ACI in D-T plasmas.


2. The MAST H-D experiment and isotopic composition measurements

Alfvén cyclotron instabilities were excited by super-Alfvénic D beam with energy $E_b \approx 70$ - 74 keV injected into spherical tokamak MAST ($a \approx 0.65$ m, $R \approx 0.85$ m) with hydrogen-deuterium (HD) plasmas at low magnetic field, $B_T(0) \approx 0.31T$ - $0.44T$. All MAST discharges had the same scenario, with H/D concentration being the only parameter varied. Plasmas with range of H/D concentrations from 0% to >60% were produced by puffing H for different time intervals, from the low field side of the machine, at a constant D puff at the high field side as Figure 1 shows. The H/D concentration was diagnosed by using i)

H_a/D_a intensity ratio, ii) fission chamber measuring neutron rate from D-D reactions, and iii) neutron camera with four lines-of-sight at different radial positions. TRANSP analysis was performed showing the effect of H dilution on DD neutron rate so the D:H mix could be estimated accurately [9]. Figure 2 shows the TRANSP results versus fission chamber measurement of DD neutron rate.

Figure 1. From top to bottom: D fuelling rate; H fuelling rate; time evolution of n_e ; time evolution of DD neutron rate during NBI

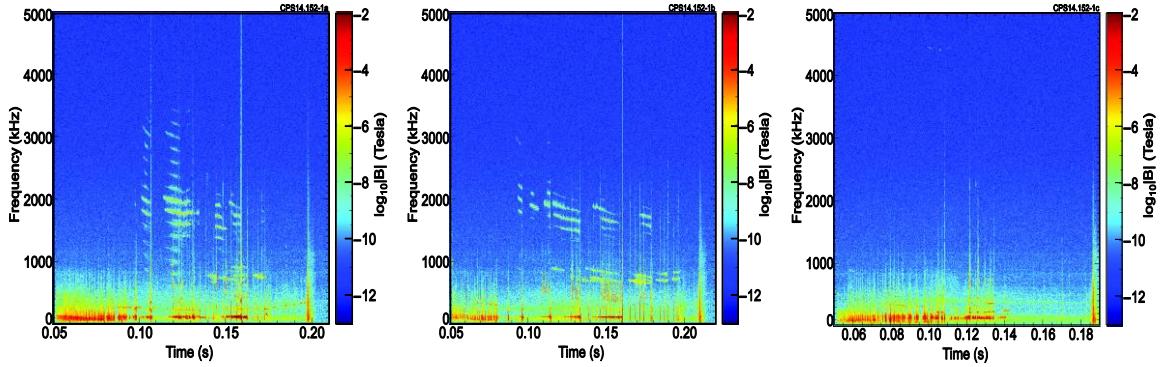


Figure 2. Neutron Yield (black) measured with MAST fission chamber against neutron rates computed with TRANSP for different H:D ratios

For detecting beam-driven ACI, OMAHA coils [7] digitised up to 10 MHz were employed thus covering the whole ion-ion hybrid frequency range, from ~ 2 to 5 MHz.

3. The mode observations

In pure D plasmas, Alfvén instabilities were excited over a broadband frequency range, up to ~ 3.5 MHz, with two distinct classes of modes (Figure 3): 1) sub-cyclotron modes with frequencies from ~ 500 kHz to ~ 1 MHz, and propagating in counter-NBI, counter-current direction (toroidal mode numbers $n < 0$), and 2) modes with frequencies from ~ 500 kHz to ~ 3.5 MHz, and $n > 0$. The second class of modes has large frequency separation, ~ 150 - 230 kHz, between modes of different n 's, and since the highest frequency of these modes exceeds D cyclotron frequency, the modes are identified as CAEs. It was observed that at increasing H/D concentration, CAEs are suppressed as Figures 4,5 show. The suppression effect on CAE is especially strong (CAE disappear) in the frequency range between cyclotron frequencies of deuterium and hydrogen, $\omega_{BD} \leq \omega \leq \omega_{BH}$, where the ion-ion hybrid resonance could provide a strong damping.

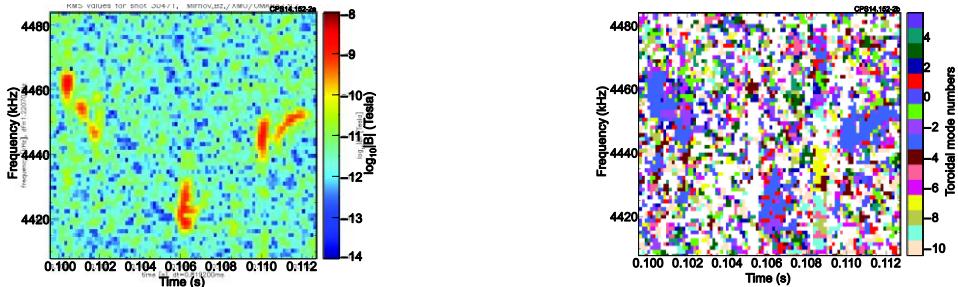


Figure 3. Beam-driven ACI observed in pure D plasma (MAST #30457).

Figure 4. Beam-driven ACI observed in discharge with 60 ms H puff giving $n_H/n_D \approx 33\%$ (MAST discharge #30464).

Figure 5. Beam-driven ACI observed in discharge with longest H puff giving $n_H/n_D \approx 60\text{--}80\%$ (MAST #30471).

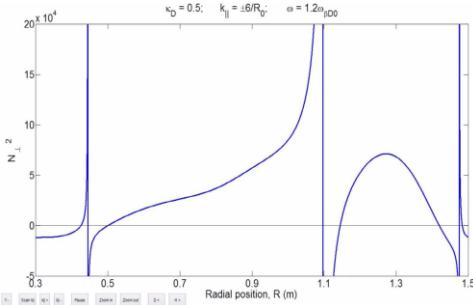
In MAST discharge with highest H concentration, modes were detected (Figs.6, 7) at a frequency of ~ 4.5 MHz, which is close to hydrogen cyclotron frequency, $\omega \approx \omega_{BH}$.

Figure 6. Amplitude magnetic spectrogram showing modes excited by D beam in the frequency range $\omega \approx \omega_{BH}$ (MAST #30471)

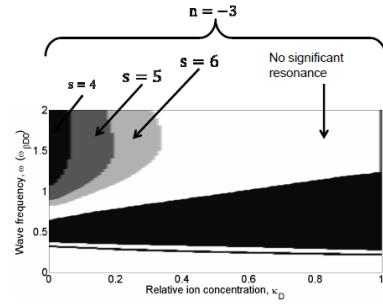
Figure 7. Phase magnetic spectrogram showing toroidal mode numbers (dominant $n=3$) of the modes shown in Fig.6.

For assessing the properties of the eigenmodes, a simplified 1D “hollow cylinder” model [10] was used. Within this model, existence and positions of the wave reflection points and resonance layers were investigated by considering the perpendicular refraction index

$$N_{\perp}^2(R, \omega, k_{\parallel}, \kappa_D) = \left(\frac{ck_R}{\omega} \right)^2 = \varepsilon_1 - N_{\parallel}^2 - \frac{\varepsilon_2^2}{\varepsilon_1 - N_{\parallel}^2}.$$


for different concentrations $\kappa_D = n_D/n_e = 1 - \kappa_H$ (Figure 8 shows an example). The

quantisation condition $\int_{R_1}^{R_2} k_R dR = \pi(l + 1/2)$ was solved then together with condition of a


weak mode conversion damping determined by the distance from the turning points to the resonance layers [11]. The modes with lowest damping were then assessed for a compatibility with the resonance condition [12]

$$\omega = \left(k_{\parallel} + \frac{s}{qR} \right) V_{\parallel b} + p\omega_{Bb}$$

and it was found (Figure 9) that for low negative n and high hydrogen concentration, a resonance with relatively low $s=4$ exists at high frequencies. This could explain the appearance of the record high frequency modes shown in Figures 6, 7 in MAST plasmas with highest H/D ratio.

Figure 8. Example of the computed perpendicular refraction index in H-D plasma for a given frequency.

Figure 9. Wave-particle resonances within the transparency regions. The regions of lowest mode conversion are shown in darker colour.

4. Conclusions

- MAST experiment on beam-driven Alfvén cyclotron instabilities in H-D plasmas was performed with H/D mix varied from 0 to >60%;
- It was observed that at increasing H/D concentration CAEs are suppressed, with the strongest effect (CAEs disappear) in the ion-ion hybrid frequency range $\omega_{BD} \leq \omega \leq \omega_{BH}$. Similar effect of CAE suppression in the frequency range $\omega_{BT} \leq \omega \leq \omega_{BD}$ is expected for D-T plasma;
- Beam-driven modes observed on MAST at a record-high frequency of ~ 5 MHz (i.e. at $\omega \approx \omega_{BH}$) could be explained by the H/D mix effect on the wave transparency region combined with the resonance condition;
- An accurate eigenmode analysis may provide a diagnostic technique for measuring H/D or D/T mix in the plasma core.

The authors thank M. Lilley and M. Fitzgerald for useful discussions, and J. Hillesheim for confirming the detection of highest frequency modes. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053 and from the RCUK Energy Programme [grant number EP/I501045]

[1] G.A.Cottrell et al., Phys. Rev. Lett. **60** (1988) 33 ; [2] S.Cauffman, R.Majeski, Rev. Sci. Instrum. **66** (1995) 817; [3] W.W.Heidbrink and G.J.Sadler, Nucl. Fusion **34** (1994) 535; [4] M.Ichimura et al., Nucl. Fusion **48** (2008) 035012; [5] R.D'Inca et al., Proceed. 38th EPS, Strasbourg (2011) P1.053; [6] N.N.Gorelenkov et al., Nucl. Fusion **46** (2006) S933; [7] L.Appel et al., PPCF **50** (2008) 115011; [8] M.K.Lilley, PhD Thesis, Imperial College London (2009); [9] I.Klimek et al., submitted to Rev. Sci. Instr. (2014); [10] V.D.Yegorenkov and K.N.Stepanov, EPS Conference (1989), Venice, v.3, p.1207; [11] H.J.C.Oliver et al., to be submitted to PPCF (2004); [12] S.E.Sharapov et al., submitted to Phys. of Plasmas (2014).