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Abstract

The application of RMPs causes a perturbation of the plasma edge which produces a toroidal
variation in the shape and position of the edge transport barrier observed at different sectors
using Thomson scattering (TS) and a linear D, camera. The impact that the strength of the
applied RMP has on the toroidal perturbation is examined by varying the coils current and the
distance between the plasma and the RMP coils. The application of RMP also causes an
increase in ELM frequency known as mitigation. The magnitude of the toroidal perturbation
is compared with the mitigated ELM frequency and the pedestal behaviour in discharges for
both n=4 and n=6 RMP configurations. To examine the impact of RMPs on performance, the
plasma pressure pedestal just before an ELM crash is examined as it varies with applied RMP
coil current and ELM frequency. ELM affected area as a function of mitigated frequency is
also examined to determine the nature of the lower particle loss per ELM at high mitigated
ELM frequency. During an RMP induced density pump out, a drop in core plasma density is
typically observed. With careful refuelling it has been possible to replace the core density
loss in recent experiments [1]. This results in a change in the gradient inside the separatrix,

shown elsewhere to change ELM losses e
[2]. On MAST the RMP system consists of 410" —
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Figure 1: The n, pedestal and Da peak radial
position as a function of RMP phase.
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Figure 2: TS n, profiles with respect to the Phase and mode number of the perturbation
relative ETB location for n = 6 RMP. (Figure 1). The total observed shift is due to this

effect and the response of the plasma control system.

0os 0N the position of the diagnostic, relative to the

Figure 2, shows a set of similar discharges with only the strength of the n = 6 perturbations
changing. When the coil current increases the effective outward shift of the average pedestal
position also increases. These profiles are obtained by averaging the n, TS profiles for each
discharge during the last 25% of the ELM cycle in a time window covering from 0.50s to
0.60s, where the RMPs are at their —
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4 discharges, the outboard plasma Figure 3: ELM frequency as a function of the relative
pedestal is incrementally moved outwards ETB location and how they scale with ELM coil current.
towards the vessel wall radially from 1.38m to 1.41m. When the plasma boundary is moved
into closer proximity to the RMP coils, an increase in ELM mitigation is observed.

Comparing the n = 4 results those of the investigated n = 6 discharges, a similar trend is
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observed. In the n = 6 discharges the plasma position was kept constant while varying the
RMP coil current from 0 to 1.4kA. This is shown in Figure 3, where either pushing the
plasma outward, closer to the RMP coils with a fixed coil current or increasing the coil
current at a fixed plasma position, the ELM frequency increases, resulting in an increase in
ELM mitigation.
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Figure 4: The n,, profiles before (left) and after (right) an ELM event for two RMP shots, one
with strong refuelling, with both shots compared to a coils-off reference discharge.
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the lost pedestal density with strong gas

shots are examined to highlight both the impact Figure 5: Electron density (n,) losses for the two
highly ELM mitigated shots with and without
of RMPs on the ELM affected area and the syrong refuelling and their coils-off reference.
influence of strong refuelling, comparing RMP discharges with and without this refuelling to
a shared coils-off reference discharge (Figure 4). The effect of the applied RMPs is evident in
Figure 5, where it is shown when the perturbation is applied, a decrease in the density loss per

elm event is observed. This decrease can be related to the decrease in the peak pedestal height
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showing little change with the application of RMPs in the examined discharges, adding no

additional information in the current state of the examination.

References

[1] A. Kirk et al "Effect of resonant magnetic perturbations on low collisionality discharges in MAST and
a comparison with ASDEX Upgrade", (in preperation).

[2] N. Oyama et al Nuclear Fusion 51, 033009 (2011).
[3] I.T. Chapman et al, 2012 Plasma Phys Control Fusion 54 105013

This work was part-funded by the RCUK Energy Programme, by the European Union's Horizon 2020 programme, and by the European
Communities under the Contracts of Association between CCFE and FOM, respectively. The views and opinions expressed herein do not

necessarily reflect those of the European Commission.



