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Figure 1: Time history of (a) line-averaged density and
filterscope, (b) time-derivative of line-averaged density,
(QH_mode) is an Operational regime (c) MHD RMS amplitude and (d) edge toroidal velocity

acceptable in ITER. Quiescent H-mode

maintained without ELMs and with constant density and radiated power that presents and at-
tractive alternative to other ELM-control techniques [3]. Density control in the QH-mode is
established by the onset of a benign magnetohydrodynamic (MHD) oscillation with a clear
magnetic signature, known as the edge harmonic oscillation (EHO). Onset of the EHO pro-
duces a clear increase in the total particle flux across the H-mode pedestal [4]. The EHO can
appear with either a coherent or broadband character, with corresponding different rates of par-
ticle transport. As seen in Fig. 1(a), the density evolution is smoothly varying and controlled
and there are no ELMs, however excursions are seen during periods where the EHO changes
character and the baseline D, increases. In Figs. 1(b,c) the periods of relatively abrupt parti-

cle pumpout (negative dn,/drt) are well correlated in time and magnitude with the increase of
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coherent EHO activity. Also correlated with the increase in coherence of the EHO is a drag of
the (impurity) toroidal rotation [Fig. 1(d)]. Radial localization of the EHO has been determined
from beam-emission spectroscopy (BES) measurements near the H-mode edge pedestal in the

steep gradient region [4].

Impurity Confinement

While the EHO is known to effectively increase the electron particle transport, a question
remains regarding the rate of impurity transport by the EHO. In this paper we investigate the ef-
ficacy of the EHO as the particle transport mechanism for expelling impurities from the plasma,
while the central impurity profiles will be determined by neoclassical and turbulent transport.
We compare with ELMing conditions, and over a range of toroidal rotation known to modify
the energy confinement time. To investigate the impurity particle confinement time we inject
a non-intrinsic, non-recycling impurity and monitor the uptake and expulsion of the ion from
charge-exchange recombination (CER) spectroscopy to deduce the impurity ion confinement
time. The confinement time is revealed by the exponential time-decay of the photoemission after
its peak intensity in time-stationary conditions. A mixture of 90% deuterium and 10% carbon-
tetrafluoride was used to introduce fluorine into the tokamak. Fluorine was chosen due to its
unique characteristics. Fluorine is non-intrinsic, and monitoring of the fluorine line emission in
discharges prior to deliberately introducing fluorine revealed negligible emission. Fluorine is
highly reactive and electronegative which minimizes the recycling of this impurity. In each dis-
charge the fluorine emission is negligible prior to the the gas puff, and decays monotonically to
noise levels after each gas injection. Fluorine is fully stripped in the core of fusion-grade plas-
mas with beam-induced charge-exchange emission from the F-IX (10-9) transition at 4796 A,
and complex atomic modeling to determine charge-state ionization balance is unnecessary.

A critical requirement for any operational scenario with mitigated or absent ELMs is rapid
impurity exhaust. In order to assess the impurity expulsion rate induced by the EHO and com-
pare with the impurity expulsion by ELMs, two discharges are compared with approximately
equal plasma density. In the ELMing discharge the EHO amplitude decays during the early
ELM-free phase and disappears, replaced by large and infrequent ELMs. Figure 2 displays the
time history of the two discharges. Here the timebase is with respect to the first discharge num-
ber. Density in the QH-mode is held relatively constant, while the ELMing discharge displays
the repeated cycle of density rise followed by a rapid drop at the ELM crash, indicated by the
large excursions in the D time history. Central fluorine emission in these two discharges dis-
played in Fig. 2(c) decays smoothly for both QH-mode and ELMing conditions. However the
decay constant 7, is equal to, or smaller, in the QH-mode discharge than the low-frequency
ELMing discharge. This displays equal or more rapid expulsion of the impurity by the con-
tinuous transport provided by the EHO than low-frequency periodic ELMs. A database of dis-
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charges that are QH-mode or ELMing during this experimental campaign on impurity transport
has been compiled to assess the general scaling of impurity confinement time for QH-mode and
ELMing discharges during steady periods.
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study compared to ELMing conditions. It is well known that the impurity flushing by ELMs
is proportional to the ELM frequency, and high frequency ELMs will display reduced impurity
confinement times lower than those reported in this study.

One important control parameter that has clear effects on energy confinement in QH-mode
plasmas is the applied neutral beam injection (NBI) torque. QH-mode is a regime where the
the energy confinement can be maximized at low NBI torque and low toroidal rotation across
much of the plasma minor radius, while maintaining strong E x B rotation shear at the pedestal.
The strong edge rotation shear arises either naturally, or with the assistance of non-resonant
magnetic field (NRMF) torque through neoclassical toroidal viscosity (NTV) [8]. Therefore
a critical question is whether the confinement time of impurities also increases with energy
confinement, or if the mechanism for increased energy confinement permits rapid cross-field
impurity exhaust while retaining thermal energy. In order to test the particle confinement at low
NBI torque, a sequence of discharges was executed at fixed density, while the NBI torque was
systematically lowered after the initial startup phase. Figure 3 displays a torque scan with the
plasma density held at {n,) ~ 2 x 10! m~3. Here (n,) denotes line-averaged density from the

CO> interferometer. Torque from NBI was reduced from T;,; ~ 4.7 N-m to 0.6 N-m, with a
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corresponding central toroidal velocity decrease from V;,, ~ 310 km/s to V;,, ~ —20 km/s. De-
spite the reduction in toroidal rotation and E x B rotation shear across most of the plasma minor
radius, the overall thermal energy confinement determined from TRANSP increases from 100-
150 ms. This increase in confinement is contrary to observations in advanced scenarios [9, 10],
which suffer a degradation in confinement as mean E X B shear is reduced by lowering the
toroidal rotation. For all discharges in the torque scan, the decay time of the fluorine emission
is seen to be approximately constant, with 7, ~ 375 — 425 ms with no systematic change with

torque or rotation. Thus while the energy confinement increases, the impurity particle confine-
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Figure 3: Time history of (a) line-averaged density, (D)

central toroidal rotation, (c) fluorine emission and (d)
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scaling of energy confinement with injected torque. Over-
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