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1. Introduction

Fusion devices are often operated using wall-coating methods involving the deposition of thin
(~100 nm), low-Z layers instead of using as-installed, bare PFCs. These layers are found to
enhance plasma performance (energy confinement) through impurity suppression, lower
radiative losses and changes in recycling. The primary method used is termed “boronization”
(see Ref. 1 and references therein). Boronization has been shown to effectively getter oxygen,
thereby suppressing it in the plasma, which reduces core plasma radiation and sputtering of
PFC surfaces. Boronizations in RFX-mod (reversed field pinch experiment, a/R = 0.46/2,
Imax=2 MA) have been carried out by glow discharge plasmas using a gas mixture of He
(90%) and B,Hg (10%). The thickness of the coating film after boronizations has been
estimated by means of post mortem analyses of graphite samples. SIMS (Secondary Ions
Mass Spectrometry) has been performed in order to obtain the depth profiles of the species
present on the surface of the samples. During the boronization the gas exhaust has been
monitored by a RGA (Residual Gas Analyzer) in order to assess the real time boron exhaust
from RFX-mod vacuum vessel and hence assess the deposition of boron on the graphite first
wall. Boronizations achieved at high glow discharge plasma power in RFX-mod showed a
higher deposition rate of boron at the first wall and a lower boron exhaust combined with a
decrease in the oxygen partial pressure. The deposition rate has been estimated from the
boron depth retrieved from SIMS and normalized to the boronization duration. In Komatsu’s
papers [2,3,4] where the growth of boron films in PECVD (plasma-enhanced chemical vapor
deposition) from (B,Hs + He) was studied, it was found that the reaction order makes a
transition at a power threshold with an increase of the plasma power. Deciphering the
physical chemistry between hydrogen, oxygen, boron and the carbon substrate is of great

importance to improve the boronization favorable effect in RFX-mod. To this aim graphite
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samples that have been exposed during two boronizations achieved at a glow power range
(100W-600W) have been studied by X-ray Photoelectron Spectroscopy and Auger Electron
Spectroscopy).

2. RFX-mod experiment and the boronization plant
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partial pressure by the RGA. In order to investigate the chemical processes involved in
boronizations achieved in RFX-mod, a ~250nm thick boron coating produced after a
boronization achieved at room temperature and 450W glow discharge plasma power has been
analyzed by XPS and AES spectroscopy combined with depth argon etching (Ar" ions
sputtered at lkeV, 10'5-10'4mbar, and IOMNcmZ). The XPS analysis was carried out with

incident X-ray of Al Ko and the spectra of the O 1s, B 1s and C 1s were mainly measured.

2. Experimental results
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calculated by normalizing the estimated thickness obtained from SIMS
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measurements to the working pressure and the
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3. Discussion of the results

According to SIMS measured profiles, boronizations

in RFX-mod achieved at glow plasma power lower

than 200W produced a film with low boron thickness

while boronizations achieved at a glow power higher

than 200W have shown a significantly higher (~10x)

boron deposition rate. Similarly, the partial pressure
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and C 1s (b) core lines.

dramatic decrease when the glow plasma power is

increased over 400W while the working gas pressure is held constant. This can be interpreted
as a significant increase in the boron deposition rate on the first wall at GDC power higher
than 400W, in qualitative agreement with the results obtained by SIMS, though at higher
power threshold. It is also clearly seen that the oxygen partial pressure decreases at higher
glow power, suggesting the capability of boron to getter oxygen also during the deposition
process. The depth XPS analysis of the boron coating for a boronization achieved at room
temperature and high glow plasma power has shown a poor surface oxidation and a high in-

depth concentration of oxygen. The reason of such feature is speculated to be a combined

high glow plasma power and high oxygen residual pressure effect. The predominant chemical
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bond in the deconvolution of boron line corresponds to the stoichiometric boron oxide B,Os3,
with much smaller contributions of B-B, B-H and B-C lines. The absence of B,Os interaction
on the surface is presently unknown and investigations of this feature will be the subject of
future work. The chemistry of samples exposed to boronizations achieved at low glow power

is still missing and is scheduled this year.

4. Summary and conclusions

The efficiency of boron wall-coating of the graphite first wall in RFX-mod for boronizations
achieved at different glow plasma power and wall temperature has been performed. It was
found that for boronizations achieved at higher glow plasma power >200W the deposition rate
of boron measured by SIMS spectroscopy is significantly higher with respect to boronizations
achieved at low power. It has also been observed a reduction in the instant partial pressures of
boron and oxygen measured by a RGA in correspondence to GDC power higher than about
400W. The two methods gave the same qualitative result though at a different power
threshold value. The discrepancy is still not clear and will be investigated in future analysis.
XPS depth profile of the boron coating has revealed a considerable in-depth oxygen
concentration combined with dominant stoichiometric boron oxide B203 complexes while
very small boron oxide was observed on the surface. In the context of correlating these
features to the boronization experimental conditions in terms of plasma power, wall

temperature and oxygen residual pressure, further XPS depth analyses are needed.
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