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1. Introduction

The locking and unlocking of the tearing modes (TMs) is studied in EXTRAP T2R
reversed-field pinch (RFP) and compared with the predictions from theory [1]. Plasma flow
braking due to magnetic perturbations has previously been observed both in tokamaks, such
as COMPASS-C [2], and reversed-field pinches, such as EXTRAP T2R [3].

A locked TM enhances the plasma-wall interaction and can lead to disruptions. The
locking is due to the electromagnetic torque acting on the TM. The torque can be produced by
a magnetic error-field or by a resonant magnetic perturbation (RMP) [1], [3]. If the RMP
amplitude is above a threshold the TM goes through a transition from fast rotation to a wall
locked state. To unlock the TM the RMP has to be reduced to a much lower amplitude than
the locking threshold.

The aim of the present work is to experimentally study the mechanism behind the
hysteresis in the locking/unlocking process. An RMP with poloidal m=1 and toroidal n=-15
harmonic and varying amplitude was applied to study the RMP effect on tearing mode (TM)
dynamics and plasma flow braking. In a first approximation, the TMs co-rotate with the
plasma in EXTRAP-T2R. Hence, the measurement of the TM velocities gives a good
estimation of the plasma flow velocity profile [4]. The results have been compared to a
theoretical model [1] of the magnetic island temporal evolution.

2. The Device and magnetic coils
The EXTRAP-T2R [5] device (Ry=1.24 m, a=0.183 m) is a medium-size reversed field
pinch. Typical plasma parameters are: plasma current 7, ~ 70-100 k4, electron temperature 7,
=~ 200-300 eV and electron density n,~ 10" m™. In this work the plasma current was 7,=80
kA, the pinch parameter ®=1.6, the reversal parameter F=-0.2 and the resonant harmonics
are (m=1, n<-12).

The device is equipped with a real-time control system that suppresses error fields

and resistive wall modes (RWMs). In addition, the control system can produce external
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magnetic perturbations in a controlled fashion, i.e. with harmonic, amplitude and phase

decided by the user.

3. Tearing mode locking/unlocking process
In a stationary phase before the locking, the EM torque (that breaks the plasma) is balanced
by the viscous torque (that tends to avoid changes in the plasma rotation), i.e. Tyisc = Tras 1S

expected in this phase. The viscous torque is described by Equation 1 [3]:

2
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where R is the major radius, » the minor radius, v, the kinematic viscosity, p the plasma
density profile and 42 the angular velocity profile modification due to the RMP.

The electromagnetic torque is proportional to both the TM and the RMP amplitudes

and sine of their phase difference A¢ as described by Equation 2 [3]:
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The experimental behaviour of the TM island is
modelled using the approach described in reference [1].
Fig. 3 shows the results from the simulation when an
RMP of harmonic (m=1, n=-15) and amplitude 0.6 mT is
applied. The velocity, Fig. 3(c), goes through phases of
acceleration and deceleration, which depend on the phase
difference between the tearing mode and the RMP.
However, on average the tearing mode velocity is
reduced until the TM locks to the wall (at ~3 ms).

The TM starts to spin up when the RMP is

turned off (at 7 ms). In Fig. 3(d) the velocity - 0.6
E

reduction profile is shown at different time g o4
o= 0.2

instants during the island evolution. The profile
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Figure 2. Velocity profile modification
at 17.3 ms (blue circles) and 19.7 ms
(red diamonds).
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Figure 4. Experimental (a) and simulated (b) tearing mode velocity versus applied RMP amplitude. The blue circles

show the velocity reduction during the RMP ramp-up and the red triangles show the velocity during the RMP

ramp-down.
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The viscous torque is proportional to the second  Figure 5. Volume integrated viscous (red
derivative of 4Q (the angular velocity profile gzisl;e;)tﬁg(:aiw'\g(ubr!urfhgsred%) e
modification due to the RMP). When the plasma rotates
the velocity profile modification (at first) is local at the resonant radius. As the RMP
increases the reduction becomes higher at the resonant radius and hence the viscous torque
increases. Indeed, the results (Fig. 5) indicate that viscous torque increases (almost) linearly
proportional to RMP amplitude. However, when the plasma locks the velocity profile
modification relaxes (Fig. 2 and Fig. 3(d)). Hence, the viscous torque drops (Fig. 5). To
re-start the plasma rotation the EM torque has to be reduced below this lower viscous

(restoring) torque.
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