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The Reversed Field Pinch (RFP) possesses the technical advantage that the imposed toroidal
magnetic field needs not to be as large as for a tokamak. However, it was shown that RFP
devices are plagued by magnetohydrodynamic (MHD) instabilities, leading to a turbulent state
which degrades the confinement quality. However, in the last two decades quasi-single helicity
(QSH) states were observed in RFP experiments, where the full turbulent regime is avoided and
one helical mode predominates [1, 2, 3, 4]. In the QSH state there is a decrease of magnetic
chaos and the formation of a coherent helical structure within the plasma.

In this study we investigate the influence of the curvature of the magnetic field on the RFP
dynamics by comparing two distinct geometries: a torus with a periodic cylinder. It is found
that an axisymmetric toroidal mode is always present in the toroidal, but absent in the cylindri-
cal configuration. In particular, in contrast to the cylinder, the toroidal case presents a double
poloidal recirculation cell with a shear localized at the plasma edge. Quasi-single-helicity states
are found to be more persistent in toroidal geometry than in periodic cylinder. Also quantita-
tively, better agreement in the decrease of the magnetic toroidal field at the edge, as a function
of the pinch parameter is observed for the toroidal geometry simulations rather than for the
straight cylinder case.

We consider non-ideal MHD in which both viscous and resistive effects are taken into ac-
count. Indeed, if we drop the resistive term and consider ideal MHD, the imposed toroidal
electric field will become independent from the toroidal plasma current, an assumption which

can dramatically change the plasma dynamics [5]. The Alfvén-normalized MHD equations are,

du—M"V’u=-Vp*+uxw+jxB, (1)

B-S"'V’B=VxwuxB), )

with V-u =0 and V- B = 0, the current density j = V X B, the vorticity w = V X u, the total
pressure p* = p +u?/2. Two distinct geometries are considered: a torus and a periodic cylinder,
both with circular cross-section. The reference length L is the diameter of these cross sections.

The normalization introduces two dimensionless quantities, S = C4L/A and M = C4L/v the
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Lundquist and Montgomery number, respectively, with A the magnetic diffusivity and v the
kinematic viscosity. The ratio of these two quantities is the magnetic Prandtl number Pr = v/A.

For a given geometry, the helical curvature of the magnetic field is in our system determined
by the pinch ratio ®. For the toroidal geometry the ® parameter is defined as the wall averaged
poloidal magnetic field over the volume averaged toroidal magnetic field, ® = Bp/{Br). For the

periodic cylinder B needs to be replaced by Bz in this definition.

Toroidal and cylindrical helical states

For the considered geometry, under our assumptions, the dynamics are entirely determined by
the parameters M, Pr and @®. In the present investigation we keep the magnetic Prandtl number
fixed at Pr = 3 and we consider two different Montgomery numbers M = 444 and M = 888.
Here we shall focus in particular on the influence of the pinch ratio on the dynamics. All results

are evaluated once the system has obtained a statistically steady state.
1

: ; T
n=3 &=
0.8

n==4 A L

1

%

0.6 0.6

ne
P
4
=5 o
A
04} y =04
02} A 02
I T e e S ) S .

0.4 0.8 12 1.6 2 02 04 06 08 1 1.2 14
(©] Q

El/ (ZEp)
i/ (CE)

Figure 1: Ratio of the kinetic energy of the dominant toroidal modes over the total kinetic energy for the torus
geometry, M = 444 (left) and M = 888 (right) as a function of ®. Visualization of the modes: toroidal velocity
isocontours +0.007 (blue) and —0.007 (orange).
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Figure 2: Ratio of the kinetic energy of the dominant axial modes over the total kinetic energy for the cylindri-
cal geometry, M = 444 (left) and M = 888 (right) as a function of . Visualization of the modes: axial velocity
isocontours +0.008 (blue) and —0.008 (orange).

In Fig. 1 it is shown that for a value of ® < 1 the kinetic energy is mostly contained in the
zero toroidal mode. This means that the velocity field for these parameters is axi-symmetric
around the major axis of the torus. At higher values of ®, roughly around ® = 1, the helical

modes with n # 0 become important. But even at the highest values of ® reported in the present
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investigation, the toroidal zero mode represents around 20% of the total kinetic energy and thus
importantly affects the dynamics for all cases considered here. In contrast, in the cylindrical
geometry the relative influence of the axial-invariant mode is negligible for all values of M and
0. This marks an important difference: due to the curvature of the magnetic field, RFP dynamics
will always be governed by a mix of helical modes, and toroidally invariant modes. These latter
are absent in cylindrical geometry.

The dominant helical modes at the higher pinch ratios are n or k, = 3,4 for the toroidal and
cylindrical geometry (see Figs. 1 and 2). This result is in good agreement with experimental
data from the RFP RELAX, which possesses an aspect ratio ~ 2 close to one in the present
simulations. The dominant modes measured in this device are n = 4 and n = 5 [7]. For the
simulations performed with M = 888 there is an equipartition of the kinetic energy between
more modes in the cylindrical geometry and the state is in a multiple-helicity state [1]. The
toroidal simulations have a mode n = 4 which continues to be significantly more energetic than
the others. The toroidal geometry displays thus a state closer to a single-helicity state than the
cylinder.

In Fig. 3 (a), an instanteous plot of the velocity field in a poloidal cross section is presented
for the simulation with M =444 and © = 1.83. Fig. 3 (b) shows the toroidally averaged poloidal
flow, corresponding to the n = 0 mode. This field is composed of two counter-rotating vortices,
and is characterized by peaked poloidal velocities located in the external region where a shear
zone exists. The kinetic energy of the zero mode is mainly localized at the plasma edge. This
flow-field was obtained analytically for large transport coefficients in [8] and numerically for
relatively high Lundquist numbers in [9]. In Fig. 3 (c) we show the flow corresponding to the
helical modes modes n # 0, the dominant mode is n = 3. If the total poloidal flow is compared
to the poloidal flow in the cylindrical geometry Fig. 3 (d), an important difference is observed.
The double vortex flow pattern appearing in the torus is completely absent in the cylindrical
geometry. This poloidal flow pattern is relevant because the flow is composed of two counter-
rotating vortices with the shear at the plasma edge. This steep gradient zone could be related
to transport barriers that are observed experimentally [10]. It seems from the present results
that this flow pattern might be related to MHD self-organization, but only in the presence of a
toroidally curved magnetic field.

Quantitatively the numerical results are compared to experimental data of three different RFP
devices. The first set of experimental data comes from the REPUTE experiment, that is de-
scribed in [11], the second set of data is the RFP ZT-40M [11] and the third is from the device

RELAX [7]. We recall that this last experiment has a low aspect ratio ~ 2, close to the aspect



41%* EPS Conference on Plasma Physics P5.084

0.03

=

5t
= ~ Q

@ ® © @

Figure 3: Poloidal velocity vector norm (color) and poloidal streamlines in the toroidal geometry (a-c) and
cylinder (d). (a) — Total poloidal velocity field in a poloidal cut. (b) — The azimuthally averaged poloidal field
(mode n =0). (c) — The total field (a) minus the azimuthally averaged field (b). For M = 444 and © = 1.83. (d) -
Total poloidal velocity field in a poloidal cut in the cylinder for M = 444 and © = 2.16.

ratio used in the present simulations. In Fig. 4 our numerical and the experimental results are
presented in the ® — F plane. F is the reversal parameter defined as the wall averaged toroidal

magnetic field over the volume averaged toroidal magnetic field, F = Br/(Br).
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ure we note that both the geometry and the
Lundquist number play an important role in the evolution of the reversal parameter F with ©.
Using the toroidal geometry and increasing sufficiently the viscous Lundquist number, we fit

better the experimental data.
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