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The Reversed Field Pinch (RFP) possesses the technical advantage that the imposed toroidal

magnetic field needs not to be as large as for a tokamak. However, it was shown that RFP

devices are plagued by magnetohydrodynamic (MHD) instabilities, leading to a turbulent state

which degrades the confinement quality. However, in the last two decades quasi-single helicity

(QSH) states were observed in RFP experiments, where the full turbulent regime is avoided and

one helical mode predominates [1, 2, 3, 4]. In the QSH state there is a decrease of magnetic

chaos and the formation of a coherent helical structure within the plasma.

In this study we investigate the influence of the curvature of the magnetic field on the RFP

dynamics by comparing two distinct geometries: a torus with a periodic cylinder. It is found

that an axisymmetric toroidal mode is always present in the toroidal, but absent in the cylindri-

cal configuration. In particular, in contrast to the cylinder, the toroidal case presents a double

poloidal recirculation cell with a shear localized at the plasma edge. Quasi-single-helicity states

are found to be more persistent in toroidal geometry than in periodic cylinder. Also quantita-

tively, better agreement in the decrease of the magnetic toroidal field at the edge, as a function

of the pinch parameter is observed for the toroidal geometry simulations rather than for the

straight cylinder case.

We consider non-ideal MHD in which both viscous and resistive effects are taken into ac-

count. Indeed, if we drop the resistive term and consider ideal MHD, the imposed toroidal

electric field will become independent from the toroidal plasma current, an assumption which

can dramatically change the plasma dynamics [5]. The Alfvén-normalized MHD equations are,

∂tu−M−1∇2u = −∇p∗+ u×ω+ j×B, (1)

∂tB−S −1∇2B = ∇× (u×B), (2)

with ∇ · u = 0 and ∇ · B = 0, the current density j = ∇× B, the vorticity ω = ∇× u, the total

pressure p∗ = p + u2/2. Two distinct geometries are considered: a torus and a periodic cylinder,

both with circular cross-section. The reference length L is the diameter of these cross sections.

The normalization introduces two dimensionless quantities, S = CAL/λ and M = CAL/ν the
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Lundquist and Montgomery number, respectively, with λ the magnetic diffusivity and ν the

kinematic viscosity. The ratio of these two quantities is the magnetic Prandtl number Pr = ν/λ.

For a given geometry, the helical curvature of the magnetic field is in our system determined

by the pinch ratio Θ. For the toroidal geometry the Θ parameter is defined as the wall averaged

poloidal magnetic field over the volume averaged toroidal magnetic field, Θ = BP/〈BT 〉. For the

periodic cylinder BT needs to be replaced by BZ in this definition.

Toroidal and cylindrical helical states

For the considered geometry, under our assumptions, the dynamics are entirely determined by

the parameters M, Pr and Θ. In the present investigation we keep the magnetic Prandtl number

fixed at Pr = 3 and we consider two different Montgomery numbers M = 444 and M = 888.

Here we shall focus in particular on the influence of the pinch ratio on the dynamics. All results

are evaluated once the system has obtained a statistically steady state.

Figure 1: Ratio of the kinetic energy of the dominant toroidal modes over the total kinetic energy for the torus

geometry, M = 444 (left) and M = 888 (right) as a function of Θ. Visualization of the modes: toroidal velocity

isocontours +0.007 (blue) and −0.007 (orange).

Figure 2: Ratio of the kinetic energy of the dominant axial modes over the total kinetic energy for the cylindri-

cal geometry, M = 444 (left) and M = 888 (right) as a function of Θ. Visualization of the modes: axial velocity

isocontours +0.008 (blue) and −0.008 (orange).

In Fig. 1 it is shown that for a value of Θ < 1 the kinetic energy is mostly contained in the

zero toroidal mode. This means that the velocity field for these parameters is axi-symmetric

around the major axis of the torus. At higher values of Θ, roughly around Θ = 1, the helical

modes with n , 0 become important. But even at the highest values of Θ reported in the present
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investigation, the toroidal zero mode represents around 20% of the total kinetic energy and thus

importantly affects the dynamics for all cases considered here. In contrast, in the cylindrical

geometry the relative influence of the axial-invariant mode is negligible for all values of M and

Θ. This marks an important difference: due to the curvature of the magnetic field, RFP dynamics

will always be governed by a mix of helical modes, and toroidally invariant modes. These latter

are absent in cylindrical geometry.

The dominant helical modes at the higher pinch ratios are n or kz = 3,4 for the toroidal and

cylindrical geometry (see Figs. 1 and 2). This result is in good agreement with experimental

data from the RFP RELAX, which possesses an aspect ratio ∼ 2 close to one in the present

simulations. The dominant modes measured in this device are n = 4 and n = 5 [7]. For the

simulations performed with M = 888 there is an equipartition of the kinetic energy between

more modes in the cylindrical geometry and the state is in a multiple-helicity state [1]. The

toroidal simulations have a mode n = 4 which continues to be significantly more energetic than

the others. The toroidal geometry displays thus a state closer to a single-helicity state than the

cylinder.

In Fig. 3 (a), an instanteous plot of the velocity field in a poloidal cross section is presented

for the simulation with M = 444 and Θ = 1.83. Fig. 3 (b) shows the toroidally averaged poloidal

flow, corresponding to the n = 0 mode. This field is composed of two counter-rotating vortices,

and is characterized by peaked poloidal velocities located in the external region where a shear

zone exists. The kinetic energy of the zero mode is mainly localized at the plasma edge. This

flow-field was obtained analytically for large transport coefficients in [8] and numerically for

relatively high Lundquist numbers in [9]. In Fig. 3 (c) we show the flow corresponding to the

helical modes modes n , 0, the dominant mode is n = 3. If the total poloidal flow is compared

to the poloidal flow in the cylindrical geometry Fig. 3 (d), an important difference is observed.

The double vortex flow pattern appearing in the torus is completely absent in the cylindrical

geometry. This poloidal flow pattern is relevant because the flow is composed of two counter-

rotating vortices with the shear at the plasma edge. This steep gradient zone could be related

to transport barriers that are observed experimentally [10]. It seems from the present results

that this flow pattern might be related to MHD self-organization, but only in the presence of a

toroidally curved magnetic field.

Quantitatively the numerical results are compared to experimental data of three different RFP

devices. The first set of experimental data comes from the REPUTE experiment, that is de-

scribed in [11], the second set of data is the RFP ZT-40M [11] and the third is from the device

RELAX [7]. We recall that this last experiment has a low aspect ratio ∼ 2, close to the aspect
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Figure 3: Poloidal velocity vector norm (color) and poloidal streamlines in the toroidal geometry (a-c) and

cylinder (d). (a) – Total poloidal velocity field in a poloidal cut. (b) – The azimuthally averaged poloidal field

(mode n = 0). (c) – The total field (a) minus the azimuthally averaged field (b). For M = 444 and Θ = 1.83. (d) –

Total poloidal velocity field in a poloidal cut in the cylinder for M = 444 and Θ = 2.16.

ratio used in the present simulations. In Fig. 4 our numerical and the experimental results are

presented in the Θ−F plane. F is the reversal parameter defined as the wall averaged toroidal

magnetic field over the volume averaged toroidal magnetic field, F = BT/〈BT 〉.
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Figure 4: Field reversal parameter F as a function of

the pinch parameter Θ for the toroidal and cylindrical

simulations and experimental data of three RFP devices.

From Fig. 4 we can see that the simulations

give results in the Θ−F plane comparable to

those obtained in the RFP experiments: The

reversal of the toroidal magnetic field BT for

the considered experiments occurs around the

same value, for Θ ≈ 1.5. The set of simula-

tions that fits best the experiments is the one

performed for a toroidal geometry with vis-

cous Lundquist number M = 888. In this fig-

ure we note that both the geometry and the

Lundquist number play an important role in the evolution of the reversal parameter F with Θ.

Using the toroidal geometry and increasing sufficiently the viscous Lundquist number, we fit

better the experimental data.
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