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We use an Eulerian Vlasov code to study the problem of the plasma-based backward Raman 

amplification of an ultra-short seed laser pulse in an underdense plasma. The code solves the 

one-dimensional Vlasov-Maxwell set of equations [1,2]. This allows the inclusion of kinetic 

effects such as particle heating and trapping, in the amplification of an ultra-short seed laser 

pulse in an underdense plasma. The process of energy transfer from the pump to the seed is 

mediated by the ponderomotive beat-driven resonant plasma wave in the stimulated Raman 

backscattering instability [3]. We use parameters close to those used in [4]. The wavelength of 

the pump laser beam is 0 1.05p mλ µ= , and its normalized vector potential is 0 pa  = 0.04. The 

ratio of the pump frequency to the plasma frequency is 0 / 3.180p peω ω = (corresponding to 

/ 0.099crn n ≈ , where crn  is the critical density for the pump). The seed pulse has a frequency  

0 /s peω ω  = 2.1657 and a wavelength 0 1.541s mλ µ= , resonating with the pump and the plasma 

wave, and a Gaussian shape in time of width 6.2s peτ ω = . The length of the plasma system is 

600 /p peL c ω=  01908 / pc ω∼  with an initial temperature 200eT eV= . The interaction over this 

length of the plasma will be seen to lead to an amplification of the seed pulse by a factor close 

to six times the pump amplitude. 

 

The relevant equations in the Vlasov code 

The 1D Vlasov equations for the electron distribution function ),,( tpxf xee  and the ion 

distribution function ),,( tpxf xii  are given by [1,2]: 
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Time t is normalized to the inverse pump frequency 1
peω− , length is normalized to 1

pecω− , 

velocity and momentum are normalized respectively to the velocity of light c, and to cM e . 
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The indices e and i refer to electrons and ions. In our normalized units 1=em  for the 

electrons, and eii MMm /= = 1836 for the hydrogen ions, where Mi and Me are the ion and 

electron masses respectively. In the direction normal to x, the canonical momentum, written in 

our normalized units as ⊥⊥⊥ = apP ieie
G∓GG

,,  is conserved (the vector potential ⊥aG  is normalized 

to ecM e / ). ieP ,⊥

G
 can be chosen initially to be zero, so that ⊥⊥ ±= ap ie
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transverse electromagnetic fields zy BEE ±=±  for the linearly polarized wave obey 

Maxwell’s equation: 
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 Equations (2) are integrated along the vacuum characteristic x=t. In our normalized units: 
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 Eq.(1) is solved using a 2D interpolation along the characteristics [1,2]. From Ampère’s 

equation xx JtE −=∂∂ / , we calculate 2/1+n
xE as follows: 2/1+n

xE  n
x

n
x tJE ∆−= − 2/1 , xixex JJJ += . 

 

Results 

The forward propagating linearly polarized pump 0 02 cosp pE E tω+ =  penetrates the plasma at 

x=0, with a constant amplitude field amplitude 0 pE . In our normalized units 0 0 0p p pE aω= ,  

0 3.180pω = . The normalized amplitude of the vector potential is 0 0.04pa = , 

where 2 2 18
0 /1.368x10a Iλ= , I is the intensity in W/cm2 and λ  is in microns. The pump reaches 

the right boundary at 600t =  (since in our normalized units x t= ). A seed pulse is injected at 

px L=  in the backward direction in the form 0 0 02 ( )coss s sE E P t ω τ− = − , where 0 2.1657sω = and 

0t tτ = − . The temporal shape factor of the seed pulse is 0 ( )sP t =  2 2
1exp( 0.5( ) / )st t τ− − , for 

2 0t t t< < , with 6.2sτ = , 0t = 600, 1t = 580, 2t =560 and 0 0 0s s sE aω= , with 0 0.01318sa = .  

We use N =30000 grid points in space ( 0.02x t∆ = ∆ = ), and 800 points in momentum space 

for the electrons and 200 for the ions (extrema of the electron momentum are 1.2± , and for 

the ion momentum 1.± ). The ions were included in the calculation, but did not play any role 

in the physics except establishing a small self-consistent sheath at the edges. The grid size is 
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such that / 1.01Dex λ∆ ≈ , where Deλ is the Debye length. We have a vacuum region of length 

6.6vacL = on either side of the plasma slab. The jump in density at the plasma edge on each 

side of the slab is of length =edgeL 8 , and the flat top slab density normalized to 1 is of length 

570.8 , for a total length 600pL =   

Figs.(1) show the incident laser wave +E  (full curve) and the seed pulse E−  (dashed curve) at 

t=820 and t=1180. At t=820 the seed pulse (which was injected at the right boundary x=600 in 

the backward direction at the time 2 0t t t< < , as explained above), has already amplified to an 

amplitude above the incident laser wave +E  , leaving behind a depleted wave +E . At t=1180 

the front edge of the wave E−  has developed into a solitary-like shock structure whose 

amplitude is six-time higher than the amplitude of the original incident pump laser wave +E , 

and leaving behind a more depleted wave +E .  In Fig.(2,left) we present the electron density 

plot at t=1180, and in Fig.(2,right) we magnify the front edge of the density plot. We note that  

the wavelength between two peaks in Fig.(2,right) is 1.27peλ ≈ . Indeed the wavenumber 

associated with the pump is 0 3.0185pk = , the wavenumber of the backscattered mode is 

0 1.921sk = . The resulting wavenumber of the excited plasma mode pek is such that 

0 0p s pek k k= − + , from which 4.94pek = . Hence the wavelength for the excited plasma mode 

is 1.27peλ ≈ , which is the distance between two peaks observed in Fig.(2,right).  In Fig.(3) we 

show the contour plots of the electron distribution function at the front edge of the wave, in 

50<x<100 and in 100<x<150. The vortical structures in Fig.(3) are also separated by the 

dominant wavelength 1.27peλ ≈ . We note to the right, close to x=150, a more chaotic 

behaviour appearing, due to the vortices interacting together. 
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Figure (1). The incident laser wave +E  (full curve) and the seed pulse E−  (dashed curve) at 
                t=820 (left), and t=1180 (right) 
 

          
Figure (2). Plot of the electron density at t=1180. Full profile, and for 50<x<100. 
 
 

          
Figure (3). Contour plots of the electron distribution function at the front edge of the wave at 
                                t=1180. For 50<x<100 (left), and for 100<x<150 (right). 
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