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Abstract

We present analytic solutions for three-dimensional magnetized axisymmetric equilibria
confining rotating hot plasma in a gravitational field. Our solution to the full Grad-Shafranov
equation can exhibit strong equatorial plane localization of the plasma density and current,
resulting in disk equilibria for the plasma density. Unlike in [1], we find a toriodal magnetic
field is necessary to find a equilibrium in the presence of gravity for most cases of interest.
We expect our results to provide impetus to re-investigate magneto-rotational stability [2,3].
Introduction: Fully self-consistent three dimensional global equilibrium of hot, rotating
plasma confined by gravity and magnetic field are of interest for astrophysical and space
plasma applications, but have proven difficult to find. Previous magnetohydrodynamic
(MHD) models assume strict incompressibility with constant density [4], assume the density
is a flux function [5], ignore the frozen in constraint [6], and/or require poloidal flow [5-7] or
an adiabatic equation of state [8,9], which are not allowed kinetically. To satisfy constraints
imposed on a drifting Maxwellian by the Fokker-Planck equation, only toroidal flow is
allowed and the temperature must be a flux function [1,10-12]. Moreover, in the presence of
rotation and gravity the density must be allowed to vary poloidally as well as radially since
strict Keplerian motion is only possible at the equatorial plane [1]. It is anticipated that the
equilibria we find will be useful in setting up global simulations to investigate magneto-
rotational stability [2,3] in accretion disks and help shed light on the detailed mechanisms by
which mass accretion occurs at a black hole as momentum is transported outward.
Grad-Shafranov equation: The flux surfaces for an axisymmetric equilibrium must satisfy
a Grad-Shafranov equation that we find from Ampere's law and pressure balance by taking

the magnetic field to be given by

B =1IVC+ VpxVC, (1)
where T is the toroidal angle, 1 is the poloidal flux function, I = RB; with B, the toroidal
magnetic field and R the cylindrical radius from the axis of symmetry. To satisfy the kinetic

constraints [10-12] the velocity V must be toroidal
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V=QR’VC, 2)
with Q@ =cd®/dy the toroidal rotation frequency. The magnetic field is frozen into the flow
so that cV® = VxB gives B-V® =0, requiring the electrostatic potential ® to be a flux
function to lowest order. In addition, we write the gravitational potential G as

G=-GM,/r (3)
with G, the gravitational constant, r the spherical radius, and M, the mass of the
astrophysical body that is assumed to be a compact source centered at r = 0, such that R =r
sin with ¥ the angle from the axis of symmetry. Our spherical and cylindrical coordinates
are defined to satisfy rV9'=RVIx Vr and Vz=RVR x VC.

Conservation of momentum requires
¢'TxB=Mn(VG-Q’RVR)+Vp. (4)
The parallel component requires that the ion density n depend on poloidal angle
n=n(y, ) =n()e" """ =mp)e"*”, (%)
where the density and normalizing or "pseudo" density m are related via the generalized

Maxwell-Boltzmann exponential factor x that retains the poloidal dependence due to the

centrifugal and gravitational potential,
4Tk/M =Q°R*-2G, (6)

with T =T(y) and p = n(T+ZT,) = 2nT in a quasi-neutral plasma (Zn = n, = electron density)
of 1on charge number Z and ion and electron temperatures T, and T.. The toroidal momentum
balance requires the current density, j, across a flux surface vanish, j-le =0, and then
Ampere's law gives I = I(). Ampere's law also gives 4mc™'J -V = B-VOdl/dy. Then the
current density can be conveniently decomposed into toroidal and parallel components by
writing it as J=RJI,.VC+(c/4m)dl/dyB , allowing us to obtain the useful relation
JB=1J-VC+(cB:/4nR*)dI/dy , with B, =VyxVC the poloidal magnetic field and
B; =R7IVyl’ . Combining this result with the Vi component of force balance,
R’B’T-VC =1J -B+cVp[Vp+Mn(VG - Q’RVR)], and the toroidal component of Ampere's
law yields the Grad-Shafranov equation [13]

V- (R7?Vy)=-IRdl/dy-4aR’B;Vy[Vp+Mn(VG -Q°RVR)]. (7)
Separable form: To find a separable form for the Grad-Shafranov equation we assume

Y= HWR /1), (8)
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where u = cos9 and our normalization is H(u=0) = 1. The vacuum limit H = 1 - u* recovers a
homogeneous magnetic field for o = -2 and a point dipole solution if o = 1, and Y, is a
constant reference value at the reference location R, (reference values are defined at the

equatorial plane u = 0 and denoted by a subscript "0"). We obtain an ordinary differential

equation for H by assuming

Q’= Q4 (W/ o)™ *1/17, 9)
T="T,( /)", (10)
I=1, (@ /g)*", (11)

n=no (/) e, (12)

with ny =n(y =y, ,u=0) . Defining the positive constants

_ 8aG, M Mn, 871G M Mn|

= ; (13)

B;oR, Br -0
L2 AmMn QGRG 47MnQ*r? | 14

B?’O Blz) |M=0
B= 16r|:r210TO _ Sn;p‘ ’ (15)

By B, u=0
and
bro_to__ T | B (16)
"R3B}, R’B}| . B’
oPro Plu0 Plu=0

an ordinary second order nonlinear differential equation for H is obtained from (7) [13]:

d’H a(o+1) e 2 2\ 72/ (a"'l)bz Ledla
dMZ+ . H oc[zH o (1-u)H (a+2)B —(1—u2)H2/“]H e, (17)
where
K==(g/B)(1-H")= (/)1 -(1-uH™], (18)

Solution technique: Solutions to this Grad-Shafanov equation can be found by the
techniques illustrated in [1] and references therein, however, some care is needed. The
solution H must be up-down symmetric and monotonically decreasing from unity until the
poloidal magnetic field vanishes at the axis of symmetry (1 = H = 0). This behavior seems to
require d°’H/du* < 0 for all w. Consequently, we desire g - (0+1)(2b*+1) > 2w* + 2(a+2)B at u

= 0. Moreover, gravity forces us to assume o < 0 to avoid singular behavior as H — 0, with

al2

rotation requiring H < (1-u?)™*” to avoid exponential growth at the poles. An exact solution,
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H=(1-u*)*?, exists if G = 0 [1] when a.=-[2(B+1)+w’+b*]/(B+1+b*). The poloidal
magnetic field decreases with radius if a > -2 and the toroidal magnetic field remains finite at
the poles if a < -1 so we expect solutions with -1 > a = -2 are of most interest in the presence
of gravity. The g = 0 solution suggests maintaining d’H/du* < 0 as w’> — 1 requires [-
(0+1)]b* > w* + (a+2)B, a condition that is needed even when g is retained since H"*—0.

This restriction implies a toroidal magnetic field is needed to obtain a fully self-consistent
gravitational equilibrium. However, the procedures of [1] remain valid for obtaining
solutions for -1 > a = -2 with b retained. Consequently, it is possible to find plasma disk
equilibrium solutions to the Grad-Shafranov equation (17) and (18) that predict the rotation
frequency bound, and the conditions for a plasma disk as well as its thickness.

Magneto-rotational instability (MRI) without gravity: In the absence of gravity the
toroidal magnetic field can be neglected. In this case a < -2, but the MRI calculation is more
tractable [2]. The equilibrium associated with our exact solution for H is unstable if § >> 1
and Q°R* < 10T/M in the incompressible limit (roughly in agreement with [2]), and when 8 <
3/2 and Q’R* >> 2T/M in the compressible limit not considered in [2]. In the presence of

gravity [3] the toroidal magnetic field must be retained to investigate MRI instability.
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