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Abstract 
We present analytic solutions for three-dimensional magnetized axisymmetric equilibria 

confining rotating hot plasma in a gravitational field. Our solution to the full Grad-Shafranov 

equation can exhibit strong equatorial plane localization of the plasma density and current, 

resulting in disk equilibria for the plasma density. Unlike in [1], we find a toriodal magnetic 

field is necessary to find a equilibrium in the presence of gravity for most cases of interest. 

We expect our results to provide impetus to re-investigate magneto-rotational stability [2,3]. 

Introduction: Fully self-consistent three dimensional global equilibrium of hot, rotating 

plasma confined by gravity and magnetic field are of interest for astrophysical and space 

plasma applications, but have proven difficult to find. Previous magnetohydrodynamic 

(MHD) models assume strict incompressibility with constant density [4], assume the density 

is a flux function [5], ignore the frozen in constraint [6], and/or require poloidal flow [5-7] or 

an adiabatic equation of state [8,9], which are not allowed kinetically. To satisfy constraints 

imposed on a drifting Maxwellian by the Fokker-Planck equation, only toroidal flow is 

allowed and the temperature must be a flux function [1,10-12]. Moreover, in the presence of 

rotation and gravity the density must be allowed to vary poloidally as well as radially since 

strict Keplerian motion is only possible at the equatorial plane [1]. It is anticipated that the 

equilibria we find will be useful in setting up global simulations to investigate magneto-

rotational stability [2,3] in accretion disks and help shed light on the detailed mechanisms by 

which mass accretion occurs at a black hole as momentum is transported outward. 

Grad-Shafranov equation: The flux surfaces for an axisymmetric equilibrium must satisfy 

a Grad-Shafranov equation that we find from Ampere's law and pressure balance by taking 

the magnetic field to be given by 

  

B= I∇ζ+∇ψ×∇ζ , (1) 

where ζ is the toroidal angle, ψ is the poloidal flux function, I = RBT with BT the toroidal 

magnetic field and R the cylindrical radius from the axis of symmetry. To satisfy the kinetic 

constraints [10-12] the velocity  

V  must be toroidal 
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
V =ΩR2∇ζ , (2) 

with Ω =cdΦ/dψ  the toroidal rotation frequency. The magnetic field is frozen into the flow 

so that  c∇Φ =

V×

B  gives  


B⋅∇Φ = 0 , requiring the electrostatic potential Φ to be a flux 

function to lowest order. In addition, we write the gravitational potential G as 

 G = −GOMO /r  (3) 

with GO the gravitational constant, r the spherical radius, and MO the mass of the 

astrophysical body that is assumed to be a compact source centered at r = 0, such that R = r 

sinϑ with ϑ the angle from the axis of symmetry. Our spherical and cylindrical coordinates 

are defined to satisfy r∇ϑ =R∇ζ×∇r  and ∇z =R∇R×∇ζ .  

 Conservation of momentum requires 

  c
−1J×

B=Mn(∇G−Ω2R∇R)+∇p . (4) 

The parallel component requires that the ion density n depend on poloidal angle 

 n = n(ψ,ϑ)= η(ψ)eκ(ψ,ϑ ) = η(ψ)eκ(ψ,ϑ ) , (5) 

where the density and normalizing or "pseudo" density η are related via the generalized 

Maxwell-Boltzmann exponential factor κ that retains the poloidal dependence due to the 

centrifugal and gravitational potential, 

 4Tκ/M =Ω2R2−2G ,  (6) 

with T = T(ψ) and p = n(Ti+ZTe) = 2nT in a quasi-neutral plasma (Zn = ne = electron density) 

of ion charge number Z and ion and electron temperatures Ti and Te. The toroidal momentum 

balance requires the current density,  

J , across a flux surface vanish,  


J ⋅∇ψ = 0 , and then 

Ampere's law gives I = I(ψ).  Ampere's law also gives  4πc
−1J ⋅∇ϑ =


B⋅∇ϑdI/dψ . Then the 

current density can be conveniently decomposed into toroidal and parallel components by 

writing it as  

J =RJ*∇ζ+ (c /4π)dI/dψ


B , allowing us to obtain the useful relation 

 

J ⋅

B= I

J ⋅∇ζ+ (cBP

2 /4πR2 )dI/dψ , with  

BP =∇ψ×∇ζ  the poloidal magnetic field and 

BP
2 =R−2 |∇ψ|2 . Combining this result with the ∇ψ  component of force balance, 

 R
2B2

J ⋅∇ζ = I


J ⋅

B+ c∇ψ⋅[∇p+Mn(∇G−Ω2R∇R)] , and the toroidal component of Ampere's 

law yields the Grad-Shafranov equation [13] 

 ∇⋅ (R−2∇ψ)= − IR−2dI /dψ− 4πR−2BP
2∇ψ⋅[∇p+Mn(∇G−Ω2R∇R)] . (7) 

Separable form: To find a separable form for the Grad-Shafranov equation we assume 

 ψ = ψOH(µ)(RO /r)
α , (8) 
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where µ = cosϑ and our normalization is H(µ=0) = 1. The vacuum limit H = 1 - µ2 recovers a 

homogeneous magnetic field for α = -2 and a point dipole solution if α = 1, and ψO  is a 

constant reference value at the reference location RO (reference values are defined at the 

equatorial plane µ = 0 and denoted by a subscript "o"). We obtain an ordinary differential 

equation for H by assuming  

 Ω2=ΩO
2 (ψ /ψO )

3/α ∝1/ r3 , (9) 

 T= TO(ψ /ψO )
1/α , (10)  

 I= IO(ψ /ψO )
1+1/α , (11) 

 n = nO(ψ/ψO )
2+3/αeκ(µ) , (12) 

with nO = n(ψ = ψO,µ = 0) . Defining the positive constants 

 
g= 8πGOMOMnO

BPO
2 RO

=
8πGOMOMn

BP
2r

µ=0

, (13) 

 
ω2 =

4πMnOΩO
2RO

2

BPO
2 =

4πMnΩ2r2

BP
2

µ=0

, (14) 

 
β=
16πnOTO
BPO
2 =

8πp
BP
2

µ=0

, (15) 

and 

 b2 = IO
2

RO
2BPO

2 =
I2

R2BP
2
µ=0

=
BT
2

BP
2
µ=0

, (16) 

an ordinary second order nonlinear differential equation for H is obtained from (7) [13]: 

 

d2H
dµ2

+
α(α+1)
1−µ2

H =α[g
2
H−1/α −ω2 (1−µ2 )H2/α− (α+2)β− (α+1)b2

(1−µ2 )H2/α ]H
1+4/αeκ , (17) 

where 

 κ = −(g /β)(1−H−1/α )− (ω2 /β)[1− (1−µ2 )H2/α] , (18) 

Solution technique: Solutions to this Grad-Shafanov equation can be found by the 

techniques illustrated in [1] and references therein, however, some care is needed. The 

solution H must be up-down symmetric and monotonically decreasing from unity until the 

poloidal magnetic field vanishes at the axis of symmetry (1 ≥ H ≥ 0). This behavior seems to 

require d2H/dµ2 < 0 for all µ. Consequently, we desire g - (α+1)(2b2+1) > 2ω2 + 2(α+2)β at µ 

= 0. Moreover, gravity forces us to assume α < 0 to avoid singular behavior as H → 0, with 

rotation requiring H ≤ (1−µ2 ) −α/2  to avoid exponential growth at the poles. An exact solution, 
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H=(1−µ2)−α/2 , exists if G = 0 [1] when α = −[2(β+1)+ω2+b2 ] / (β+1+b2 ) . The poloidal 

magnetic field decreases with radius if α > -2 and the toroidal magnetic field remains finite at 

the poles if α < -1 so we expect solutions with -1 > α ≥ -2 are of most interest in the presence 

of gravity. The g = 0 solution suggests maintaining d2H/dµ2 < 0 as µ2 → 1 requires [- 

(α+1)]b2 > ω2 + (α+2)β, a condition that is needed even when g is retained since H−1/α→ 0 . 

This restriction implies a toroidal magnetic field is needed to obtain a fully self-consistent 

gravitational equilibrium. However, the procedures of [1] remain valid for obtaining 

solutions for -1 > α ≥ -2 with b2 retained. Consequently, it is possible to find plasma disk 

equilibrium solutions to the Grad-Shafranov equation (17) and (18) that predict the rotation 

frequency bound, and the conditions for a plasma disk as well as its thickness. 

Magneto-rotational instability (MRI) without gravity: In the absence of gravity the 

toroidal magnetic field can be neglected. In this case α < -2, but the MRI calculation is more 

tractable [2]. The equilibrium associated with our exact solution for H is unstable if β >> 1 

and Ω2R2 < 10T/M in the incompressible limit (roughly in agreement with [2]), and when β < 

3/2 and Ω2R2 >> 2T/M in the compressible limit not considered in [2]. In the presence of 

gravity [3] the toroidal magnetic field must be retained to investigate MRI instability. 
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