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Diffusive shock acceleration (DSA) in supernova remnants is the dominant paradigm for the
acceleration of cosmic rays in the Galaxy. However, the maximum possible energy to which
parallel shocks can accelerate protons in these objects is only roughly 1PeV [1], in tension
with the observed cosmic ray spectrum. Perpendicular shocks present a possible alternative [4],
and are expected to predominate if the supernova progenitor is a rotating, massive star with a
powerful wind [2]. However, stochastic acceleration in this situation is complicated, because
the underlying transport process is not necessarily diffusive, in which case the standard results
concerning particle spectra and acceleration rates lose their validity [6]. This paper presents a
new approximate, analytical approach to the test particle problem at perpendicular shocks, using
an expansion in eigenfunctions of the pitch-angle and phase dependent scattering operator. An
explicit expression for the spectral index of accelerated particles is found and compared with
the results of Monte-Carlo simulations. Full details can be found in [7].

The goal is to solve for the stationary cosmic-ray distribution f at a perpendicular shock as
a function of momentum p and distance from the shock, assuming that, in addition to their
gyro-motion, particles are continually deflected by magnetic fluctuations whose effect can be
modeled as isotropic diffusion in the direction of motion, i.e., as diffusion on the sphere of the
end-point of the unit vector p/p. In both the downstream and upstream plasmas, f then obeys a
Fokker-Planck equation. When X and ¢ are measured in the shock rest frame and p in the local

fluid frame this takes the form:
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Here, u (assumed < 1) is the shock speed and v the particle speed (both in units of ¢), @, the
gyro-frequency, U the pitch-angle cosine and ¢ the gyro-phase. The uniform magnetic field
lies along the y-axis and the shock is in the x—y plane, so that the component of the particle
velocity along the shock normal is v, = vsin 0 sin ¢. The ratio of @, to the “collision frequency”

is denoted by 1. Solutions are found by separating the variables, leading to the eigenvalue
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problem

together with boundary conditions on Q;(i,¢) that ensure regularity and single-valuedness
on the sphere. Equation (2) has both positive and negative eigenvalues (labelled with i > 0
and 7 < O respectively), in addition to the eigenvalue Ay = 0 with the isotropic eigenfunction
Qo = constant. These govern the spatial dependence of the solution: the isotropic part is inde-
pendent of z, whereas the eigenfunctions with i < 0 decay exponentially upstream (z > 0), and
grow exponentially downstream (z < 0) on a length scale that decreases as |i| increases; eigen-
functions with i > 0 have the opposite behaviour. Following the procedure used for relativistic
shocks [5], boundary conditions upstream are applied by limiting the expansion upstream to
terms with i < 0. Matching conditions at the shock (essentially Liouville’s theorem) introduce
a dependence on p into the problem and enable one to compute the corresponding downstream
distribution. This is then subjected to the boundary conditions far downstream by requiring it to
be orthogonal to the eigenfunctions with i < 0. In the absence of a source term, f is a scale-free
power law in momentum: f o< p~* and s, as well as the spatial and angular dependence of f, is
determined by the above procedure.

The eigenfunction with i = —1 plays a special
role here, since it corresponds to the only term
in the expansion that survives at large distance
upstream, and, therefore, may not change sign
in the physically relevant range (0 < ¢ < 27,
—1 < pu <1). Using this single term to repre-
sent the upstream distribution was found to give
a reasonably good approximation in the one-

dimensional case studied in [5]. This is the strat-

Figure 1: The leading eigenfunction (3) as a &Y followed here, motivated partly by the rel-
function of u and ¢, for nu =2 and v = 1 (for atively large numerical effort involved in com-
which A_j = —5.2). puting the higher-order functions in the current,
two-dimensional problem, compared to the straightforward and efficient solution available via
Monte-Carlo methods.

In the nonrelativistic limit u — 0, this eigenfunction has a small (~ u) anisotropy propor-

tional to \/1 — u2(ncos@ —sin¢@), and an eigenvalue A_; ~ —3un. Its anisotropic part gives
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the two-dimensional equivalent of the singular “diffusion” solution discussed by Fisch & Kul-
srud [3], who were concerned with the incompleteness of the eigenfunctions in the case u = 0. In
this limit, it is straightforward to show that the standard result of DSA follows: s =3r/(r—1),
where the shock compression ratio r = ug /ugq is ratio of the shock speed in the upstream medium
us to that in the downstream medium 4. However, this result is valid only for us 4 ~ € < 1/7.
In supernova remnants, ug 4 ~ 10~'-1072, and may be comparable or larger than 1/7. There-
fore, an approximation scheme that sets u ~ 1/1 ~ € < 1 is more appropriate. The resulting

eigenvalue is then ~ €°, and the eigenfunction, shown in Fig 1, is [7]
Q- 1(1,9) = eMVITHIOOPG (1, —A/2) 3)

where Ps)' is the angular, oblate, spheroidal wave function. This eigenfunction describes a
strongly anisotropic fan-beam concentrated in the plane of the shock and drifting across the
magnetic field in the same direction as the drift of unperturbed trajectories. For large nus, the
width of this beam in phase is approximately (nus)fl/ 2, which is just the diffusive spread
caused when the collision operator in (1) operates on a phase-collimated beam for a time
1/ (a)gus) roughly equal to that needed for an unperturbed trajectory to traverse the shock.

In general, evaluation of the resulting power-law

index requires a numerical integration. However,
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using a Taylor expansion of the eigenfunctions in $
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In Fig 2, this result is compared with those of fully 'CI’
relativistic Monte-Carlo simulations [7], for r = 4,
ten values of 1 between 1 and 100, and thirty val- 15 -1 05 0 05
ues of ug between 0.01 and 0.2. Qualitatively, the log,o (nus)

agreement is good. In particular, the simulations

Figure 2: Comparison of the spectral index

confirm that, to a good approximation, s depends . . . .
£ PP p calculated using the leading eigenfunction,

on 7 and mus only in Nus, since, for a fixed value (Eq. (4)) with the results of fully relativis-

of this parameter, Fig 2 shows only a weak varia- tic Monte-Carlo simulations [7], for a matrix

tion of s with the colour coding (which denotes the ©f parameters, colour-coded according to the

. lue of ing fi 1 (blue) to 100 (red).
n value). Also, the softening of the spectrum for value of 1 ranging from 1 (blue) to (red)

Nug > 1 is confirmed. However, there is a quantitative discrepancy, which may result either from
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the asymptotic expression used for the eigenfunction (which is valid only in the limit us — 0
and 11 — o0), or from the use of only the leading eigenfunction to represent the distribution, or,
of course, from both of these approximations.

Nevertheless, we conclude that non-relativistic, perpendicular shocks are effective accelera-
tors provided nug < 1. Combining this with the conjecture advanced in [4] and confirmed in [7],
that the acceleration timescale at these shocks decreases monotonically with increasing 7, leads
to the conclusion that the optimal configuration for acceleration at a nonrelativistic shock front
is one where the shock is perpendicular and the turbulence is relatively weak, such that nugs ~ 1.
In such a configuration, acceleration to energies significantly above 1PeV appears possible for

parameters thought appropriate for supernova that explode in the winds of massive stars [8].
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