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Radiation losses can significantly affect the momentum space dynamics of energetic runaway

electrons. We find that synchrotron radiation reaction can lead to the appearance of a non-

monotonic feature – a “bump” – in the runaway tail. It can be a potential source for kinetic

instabilities limiting the formation of runaway beams. We derive threshold conditions for the

bump to appear and to be physically relevant, and provide a lower bound on its location in

momentum space. Numerical calculations with CODE [1] support the analytical results.

Kinetic equation Radiation reaction increases with perpendicular momentum. The range of

perpendicular momenta where the accelerating field can overcome the friction plus the radiation

reaction then becomes limited. Pitch-angle scattering of electrons out of this “runaway region”

leads to an exponential decay of the electron distribution in the far-tail. For moderate (but rel-

ativistic) momenta, the return fluxes of electrons into the runaway region due to collisional

friction and radiation reaction can overcome the outflow due to pitch-angle scattering, which

can lead to the appearance of a local maximum in the distribution function. In the following we

assume that such a non-monotonic feature of the steady state distribution exists and we study

its properties.

The kinetic equation used here is derived from the guiding center kinetic equation for the

gyro-angle averaged distribution function F , discussed in [2]. We consider a homogeneous

plasma and a straight magnetic field line geometry, and assume the momentum range of interest

to be much higher than the thermal momentum of electrons, which leads to
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where s = p/(mec) is the dimensionless momentum, ξ = s‖/s is the pitch-angle cosine, τ =

eEct/(mec) is the normalized time with Ec = nee
3 lnΛ/(4πε20mec

2) the critical field for run-

away generation, ne the electron density, me the electron rest mass, c the speed of light, ǫ0 the

vacuum permittivity, e the elementary charge, and lnΛ the Coulomb logarithm. Furthermore

Ê = −E‖/Ec is the normalized parallel electric field, γ = (1+ s2)1/2 is the relativistic factor,

and Zeff is the effective ion charge, σ = 2Ω2
e/(3 lnΛω2

pe) quantifies the strength of the radiation

reaction (relative to collisional friction), where Ωe = eB/me and ω2
pe = e2ne/(ǫ0me) are the
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gyro-, and plasma frequencies.

It is convenient to work in parallel and perpendicular momenta, s‖ and s⊥, since we will

focus on the distribution function for small s⊥. At an extremum of the distribution function

located along the s‖ axis (satisfying (∂s‖F )|(s‖,0) = 0) the kinetic equation simplifies to

L(s‖)≡ 2
(

σs‖+
√

1+ s2
‖

)

− (1+ s2‖)σκ/Ē = 0 (1)

where Ē = (Ê−1)/[2(1+Zeff)] and κ(s‖) =−(Ê−1)/(2σF )(∂s⊥s⊥F )|s⊥=0. The order unity

parameter κ is assumed to be slowly varying with s‖, and it is defined so that it approaches 1

asymptotically in the far tail, where the distribution should approach Eq. (12) of Ref. [3].

Thresholds and bump location To find the threshold for the bump formation we use that the

distribution should have an inflection point when the bump is about to appear. In that case L(s‖)

of Eq. (1) and its derivative L′ vanish simultaneously. It can be shown that the inflection point

will not appear at high s‖. Thus we may use (1+s2‖)
1/2 ≈ 1+s2‖/2 to obtain simpler expressions

(for more details consult [2]). Neglecting κ′ corrections we find that the bump in the distribution

appears if Ē > κ∼ 1 or σ is below the threshold given by

σ0 =
3κ/Ē+

√

8+κ2/Ē2

2
(

κ2/Ē2−1
) . (2)

Right at the threshold the inflection point is located at s‖0 = σ[(1+
√
1+4σ2)/2]−1 < 1.

We can find an approximate expression for the bump location when it appears at high s‖, in

which case we may use (1+s2‖)
1/2 ≈ s‖. In this limit, by assuming the characteristic perpendic-

ular width of the distribution (∝ κ−1/2) to be approximately constant, and looking for separable

solutions of the form F = h(s‖)g(s⊥), we find from the kinetic equation that

(Ê−1)s‖h
′−2(1+σ)h=−(1+Zeff)W

2s‖h, (3)

with W 2 = 2σκ/(Ê−1), for which h(s‖)∼ s
2(1+σ)/(Ê−1)
‖

exp[−W 2(1+Zeff)/(Ê−1)s‖] is a

solution. The function h(s‖) has a maximum at

s‖ =
2Ē

κ

1+σ

σ
. (4)

Numerical investigation suggests that the order unity parameter κ is usually smaller than 1 at

the bump. Thus Eq. (4) for κ= 1 is a lower bound for the bump location in momentum space.

For small values of σ, the bump would appear at high parallel momenta. Defining some upper

limit of physical interest, s‖,L, Eq. (4) may be used to find an estimate for a lower “practical

limit” in σ for the appearance of the bump. Namely, if σ is smaller than

σL =
[

(s‖,Lκ)/(2Ē)−1
]−1

, (5)
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Figure 1: CODE simulations yielding

steady state solutions with (circles) or with-

out (crosses) a bump in the runaway tail.

Bumps above s‖ = 27 are excluded (“Bump

outside”). Solid line: bump formation

threshold Eq. (2) for κ = 1. Dashed line:

practical threshold Eq. (5) for s‖,L = 27

and κ = 0.3. The color coding shows the

location of the bump relative to s‖ = 34.

for κ=1, then a bump would only appear at some large parallel momentum above s‖,L, which is

then deemed physically irrelevant. Note that if the bump is in the far tail, κ can be significantly

less than unity, as will be shown in the next section using numerical simulations. Letting κ < 1

increases the practical limit in σ. For a normalized electric field higher than Ē = s‖,L/2, the

bump always appears above s‖,L for any value of σ.

Numerical results The numerical results were obtained using the continuum simulation tool

CODE (COllisional Distribution of Electrons), used in its time-independent mode. CODE solves

the two dimensional momentum space kinetic equation in a homogeneous plasma, using a lin-

earized Fokker-Planck operator valid for arbitrary energies, and including the radiation reaction

force [4].

To investigate the validity of our analytical calculations, we performed a scan in the parameter

space with CODE. The electron temperature and density were held constant at Te = 1keV

and ne = 5 · 1018m−3, while the magnetic field, the electric field, and the effective ion charge

were varied over the ranges B ∈ [1,6]T, Ê ∈ [2,14] and Zeff ∈ [1,3]. The simulations used 950

momentum grid points, 130 Legendre modes in ξ, and a highest resolved momentum of s= 34.

The results of the scan are presented in Fig. 1, where circle (cross) symbols correspond to

distributions with (without) a bump. The color coding reflects the location of the bump, with

100% in the color bar corresponding to s‖ = 34. Simulations with a bump above s‖ = 27 are

excluded from the figure. Increasing the normalized electric field Ē or decreasing the radiation

reaction strength σ moves the bump towards larger momenta, as expected from Eq. (4).

Good agreement is found between the numerical calculations and the bump formation thresh-

old σ0 (solid curve), Eq. (2) for κ = 1. The “no bump” solutions mostly obey the analytical

threshold and fall to the left of the threshold curve. There are some solutions with bump in this

region as well, since κ at the bump can be less than unity, which would move the threshold to
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the left. While the qualitative behavior of the threshold is still captured, the expression for the

threshold begins to fail quantitatively for σ < 0.5, showing that the slowly varying κ approxima-

tion breaks down. The lower right corner of the plot is not populated, because the simulations

where the bump would have appeared above s‖ > 27 were excluded, since they would be af-

fected by the proximity to the end of the momentum grid. With s‖,L = 27, κ = 0.3 is needed

for the practical threshold, σL of Eq. (5) (dashed line), to correspond well to the boundary of

the region of excluded points. Thus, κ can be significantly lower than unity for a bump at large

momentum.

Conclusions The time-asymptotic steady-state runaway distribution can become non-monotonic

due to synchrotron radiation reaction. This non-monotonic feature presents a potential source

for bump-on-tail instabilities, which can play a role in limiting the formation of large runaway

beams. A threshold condition for the appearance of the bump and a lower limit for its location

in momentum space were derived. Our analytical results show good agreement with numerical

simulations obtained using the CODE solver.

For a normalized electric field Ē > 1, the steady state electron distribution always exhibits

a bump, independently of the strength of the radiation reaction (for σ > 0). For Ē < 1, the

appearance of the bump is well correlated with the σ threshold, Eq. (2). However, if the bump

would appear at a very high parallel momentum it can take too long time for it to develop,

compared to other time scales of the physical system. (The temporal evolution of the distribution

function is discussed in [5].) If σ is lower than a “practical” threshold, Eq. (5), the bump will

appear at a momentum above some pre-specified limit, s‖,L. For Ē > s‖,L/2, this is satisfied for

any σ.
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