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Non-monotonic features in the runaway electron tail
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Radiation losses can significantly affect the momentum space dynamics of energetic runaway
electrons. We find that synchrotron radiation reaction can lead to the appearance of a non-
monotonic feature — a “bump” — in the runaway tail. It can be a potential source for kinetic
instabilities limiting the formation of runaway beams. We derive threshold conditions for the
bump to appear and to be physically relevant, and provide a lower bound on its location in

momentum space. Numerical calculations with CODE [1] support the analytical results.

Kinetic equation Radiation reaction increases with perpendicular momentum. The range of
perpendicular momenta where the accelerating field can overcome the friction plus the radiation
reaction then becomes limited. Pitch-angle scattering of electrons out of this “runaway region”
leads to an exponential decay of the electron distribution in the far-tail. For moderate (but rel-
ativistic) momenta, the return fluxes of electrons into the runaway region due to collisional
friction and radiation reaction can overcome the outflow due to pitch-angle scattering, which
can lead to the appearance of a local maximum in the distribution function. In the following we
assume that such a non-monotonic feature of the steady state distribution exists and we study
its properties.

The kinetic equation used here is derived from the guiding center kinetic equation for the
gyro-angle averaged distribution function £, discussed in [2]. We consider a homogeneous
plasma and a straight magnetic field line geometry, and assume the momentum range of interest
to be much higher than the thermal momentum of electrons, which leads to
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where s = p/(mec) is the dimensionless momentum, { = s|/s is the pitch-angle cosine, 7 =
eE.t/(mec) is the normalized time with E. = ne3InA/ (47r5%m602) the critical field for run-
away generation, 7, the electron density, m. the electron rest mass, c the speed of light, ¢g the
vacuum permittivity, e the elementary charge, and In A the Coulomb logarithm. Furthermore
E= —E)|/ E is the normalized parallel electric field, v = (1 + s%)1/2 is the relativistic factor,
and Zg is the effective ion charge, o = 202/ (31nAw§e) quantifies the strength of the radiation

reaction (relative to collisional friction), where €, = eB/m, and wge = e?n./(egme) are the
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gyro-, and plasma frequencies.
It is convenient to work in parallel and perpendicular momenta, s and s, , since we will
focus on the distribution function for small s ;. At an extremum of the distribution function

located along the s|| axis (satisfying (05 F')|( 5,0 = 0) the kinetic equation simplifies to
L(SH)52<JS”—|— 1+sﬁ> —(1+sﬁ)0/@/E:O (1)

where E = (E —1)/[2(1+ Zog)] and K(s)) = —(E—1)/(20F)(9s, 5, F)|s, =0. The order unity
parameter  is assumed to be slowly varying with s, and it is defined so that it approaches 1

asymptotically in the far tail, where the distribution should approach Eq. (12) of Ref. [3].

Thresholds and bump location To find the threshold for the bump formation we use that the
distribution should have an inflection point when the bump is about to appear. In that case L(s”)
of Eq. (1) and its derivative L’ vanish simultaneously. It can be shown that the inflection point
will not appear at high ). Thus we may use (14 sﬁ) 1214 sﬁ /2 to obtain simpler expressions
(for more details consult [2]). Neglecting «’ corrections we find that the bump in the distribution
appears if I/ > k ~ 1 or o is below the threshold given by
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Right at the threshold the inflection point is located at so = o/[(1 + V1+402)/2]7 < 1.

We can find an approximate expression for the bump location when it appears at high s, in
which case we may use (1+ sﬁ)l/ 2 s)|- In this limit, by assuming the characteristic perpendic-
ular width of the distribution (cx £ ~1/2) to be approximately constant, and looking for separable

solutions of the form F' = h(s|)g(s ), we find from the kinetic equation that

(E=1)syh/ —=2(1+0)h = —(1+ Zegr) W?s) I, (3)

E-1)

with W2 = 20+/(E — 1), for which h(sy) ~ si 7™V exp [-W2(1+ Ze) /(B = 1)s)] is a

solution. The function A(s|) has a maximum at
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Numerical investigation suggests that the order unity parameter ~ is usually smaller than 1 at
the bump. Thus Eq. (4) for k = 1 is a lower bound for the bump location in momentum space.

For small values of o, the bump would appear at high parallel momenta. Defining some upper
limit of physical interest, s 1, Eq. (4) may be used to find an estimate for a lower “practical
limit” in o for the appearance of the bump. Namely, if o is smaller than

ot = [(sy.r)/(2E) —1] ", (5)
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for k = 1, then a bump would only appear at some large parallel momentum above s 1, which is
then deemed physically irrelevant. Note that if the bump is in the far tail, x can be significantly
less than unity, as will be shown in the next section using numerical simulations. Letting x < 1
increases the practical limit in o. For a normalized electric field higher than £ = SH,L/ 2, the

bump always appears above s 1, for any value of 0.

Numerical results The numerical results were obtained using the continuum simulation tool
CODE (COllisional Distribution of Electrons), used in its time-independent mode. CODE solves
the two dimensional momentum space kinetic equation in a homogeneous plasma, using a lin-
earized Fokker-Planck operator valid for arbitrary energies, and including the radiation reaction
force [4].

To investigate the validity of our analytical calculations, we performed a scan in the parameter
space with CODE. The electron temperature and density were held constant at 7, = 1keV
and n, = 5- 108 m=3, while the magnetic field, the electric field, and the effective ion charge
were varied over the ranges B € [1,6] T, E € [2,14] and Z.g € [1,3]. The simulations used 950
momentum grid points, 130 Legendre modes in &, and a highest resolved momentum of s = 34.

The results of the scan are presented in Fig. 1, where circle (cross) symbols correspond to
distributions with (without) a bump. The color coding reflects the location of the bump, with
100% in the color bar corresponding to s|| = 34. Simulations with a bump above s = 27 are
excluded from the figure. Increasing the normalized electric field £ or decreasing the radiation
reaction strength o moves the bump towards larger momenta, as expected from Eq. (4).

Good agreement is found between the numerical calculations and the bump formation thresh-
old oq (solid curve), Eq. (2) for kK = 1. The “no bump” solutions mostly obey the analytical
threshold and fall to the left of the threshold curve. There are some solutions with bump in this

region as well, since « at the bump can be less than unity, which would move the threshold to



4274 EPS Conference on Plasma Physics 03.J105

the left. While the qualitative behavior of the threshold is still captured, the expression for the
threshold begins to fail quantitatively for o < 0.5, showing that the slowly varying x approxima-
tion breaks down. The lower right corner of the plot is not populated, because the simulations
where the bump would have appeared above s > 27 were excluded, since they would be af-
fected by the proximity to the end of the momentum grid. With s 1, = 27, k = 0.3 is needed
for the practical threshold, o, of Eq. (5) (dashed line), to correspond well to the boundary of
the region of excluded points. Thus, x can be significantly lower than unity for a bump at large

momentum.

Conclusions The time-asymptotic steady-state runaway distribution can become non-monotonic
due to synchrotron radiation reaction. This non-monotonic feature presents a potential source
for bump-on-tail instabilities, which can play a role in limiting the formation of large runaway
beams. A threshold condition for the appearance of the bump and a lower limit for its location
in momentum space were derived. Our analytical results show good agreement with numerical
simulations obtained using the CODE solver.

For a normalized electric field £ > 1, the steady state electron distribution always exhibits
a bump, independently of the strength of the radiation reaction (for o > 0). For £ < 1, the
appearance of the bump is well correlated with the o threshold, Eq. (2). However, if the bump
would appear at a very high parallel momentum it can take too long time for it to develop,
compared to other time scales of the physical system. (The temporal evolution of the distribution
function is discussed in [5].) If o is lower than a “practical” threshold, Eq. (5), the bump will
appear at a momentum above some pre-specified limit, s 1. For E> S|I.L /2, this is satisfied for

any o.
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