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Introduction

In next generation tokamak experiments and fusion reactors the divertor heat flux will chal-
lenge conventional means of peak heat flux reduction which makes it urgent to find innovative
approaches to solving the divertor heat exhaust problem. One recent idea for tokamak divertor
is using a higher order null (dubbed “snowflake”) instead of the standard x-point [1]. Snowflake
divertor configuration has a characteristic hexagonal separatrix structure, and it has a number of
geometric properties that may affect edge plasma and may be helpful for alleviating the divertor
heat flux problem: stronger fanning of the poloidal flux, stronger magnetic shear in the edge
region, larger radiating volume, and larger connection length in the scrape-off layer [2].

Theoretical considerations [3, 4] and recent experimental observations from snowflake di-
vertor experiments on several tokamaks indicate that presence of a near-second-order null of
poloidal field may give rise to strong plasma mixing near the magnetic divertor null point,
thereby providing sharing of heat and particle flux between multiple (three to four) strike points
[5, 2].

Further, a semi-quantitative analytic model [6] was proposed to describe plasma dynamics
driven by the pressure gradient and magnetic curvature near the null-point where the poloidal
magnetic field is small. The analytic model predicts oscillatory twisting motion of plasma
(dubbed “the churning mode”) localized at the null point, and the size of the convective zone is
much larger for snowflake than for a regular x-point configuration, for realistic tokamak param-
eters. Although the basic physics of the churning mode has been identified in the analytic model
[6], the assumptions of the analytic model may be too restrictive, in particular, the motion was
postulated to be in a particular form of differential rotation, the role of the resistive dissipation
of the twisted poloidal field was not included, and there was no account for the heat conduc-
tion in the convectively mixed plasma. In the present study the formation of the convective
cell is investigated by direct numerical simulation, solving plasma fluid equations describing

time-evolution of plasma thermal energy and electric and magnetic fields.

Reduced MHD model
The standard ideal MHD equations include equations for mass continuity, momentum bal-

ance, adiabatic gas law, and magnetic induction [7]. The specific interest here is toroidally
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symmetric plasma motion in the vicinity of the null poiiRy, Zp), where(R, 0, Z) are the usual
cylindrical coordinates; so we'll further assume (i) toroidal symmegy0, (ii) large aspect
ratio, | | /R <1, (iii) strong toroidal guide fieldBp/B; <1, and (iv) uniform densitp=const.
Instead of the cylindrical coordinates we’ll be using more convenient here Cartesian coordinates
(x,y) in the poloidal plane with the origin at the null-point, see Fig. KX R— R,y =2 — 2

The poloidal magnetic fieldB, is described
by the poloidal flux function y(x,y), Bp = ZA
—(1/Ro)ep x Oy, where O = (dx,dy), and the 0 y
toroidal magnetic field is described by the referencg\-j> -
valueByg given at the reference poitiRg, Zo), By = : \
e9Bio/(1+x/Ry). The electric field is described by N

axisymmetric potentiab (x,y), and the fluid veloc- B

ol 4

ity V is poloidal and given by = —(c/Bo)(€g X

O¢). From the magnetic induction equation one >R

can obtain the evolution equation for the poloidal

magnetic flux function, and expressing the poloidaFigure 1:Coordinates used for the model
current from the equation of motion and imposing

a constraint,(]- J,=0 one finds an evolution equation for the vorticity which is defined as
@ = (¢/Byo)pd%¢. For normalization of the equations, several reference parameters are cho-
sen at the null point (subscripted 0) and at the outer mid-pB§eBio, Py, @mid, Bpmid- These

are combined into a reference speed and time Qgit= \/W, to = amig/Ce- Length units

are normalized bynmig and time units are normalized ltiyy. Next, the pressure is normalized

by Py so at the null-point the normalized pressure is 1.0. The poloidal flux is normalized by
Yo = BpmidRoamid SO the normalized flux is on the order of unity for normalized distance
\/ﬁy2 ~1. Normalization of the electric potentialis such thaVg = [eg x 0¢], som = [1%¢.

The dissipation coefficients are normalizeddayCs.

Finally, with dissipative terms added, the equations in normalized form are summarized as

follows
(d_ _ dP 2 ) )
dp_ (1)
gP =0
d 2
[ gtV = PmV:

whered/dt = o +Ve - 0, Ve = [eg x 0¢], and@ = 0%¢.
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The non-dimensional parameters in the normalized equations are the aspeetxatigy/Ro,
and the poloidal plasma betg, = 87rPo/Bf)mid, u is the kinematic viscosityy is the thermal
diffusivity, Dy, is the magnetic diffusivity. In the equations one can identify the driving term
arising from the pressure gradient and curvature, the stabilizing forcing term from magnetic
field deformation, and dissipative terms. Note that the toroidal magnetic field does not enter
the normalized equations, and the toroidal geometry effects show up only in the curvature drive

term.

Numerical simulations

For numerical solution, the equations are discretized by finite-difference on a computational
grid and then time-integrated using standard numerical software. The simulations are carried
out in a square domaibn x L centered at the null point location. On the domain boundaries the
values of all evolved variables are maintained constant, which is consistent with the expectation
that the studied physical phenomena are localized near the null point.

The initial vorticity is@=0, and the initial mag-

netic flux yp is chosen as either a first order null

x-point configuration (XPT)y(1) = x* —Y?, or as
an exact second order null snowflake configuration os
(SNF), v = y2—3x%y, or as an inexact second or- o)
der null configuration, snowflake-minus (SNF-) or. _
snowflake-plus (SNF+W,) = y* — 3x%y + 302y, 04
where for SNF- two first order nulls aligned hori-
zontally and located gt-¢,0), and for SNF+ two
first order nulls aligned vertically and located at R S T
(0,+0).

Time-integration of Egs. (1) shows formation of Eigure 2:Plasma vortex forming in SNF con-
vortex-like structure localized at the null point. Dqtfguraﬁon
pending on the model parameters, there are various
scenarios of evolution: (i) relaxation to a rotated quasi-steady state where the vertical pressure
gradientdP/dy is near zero, or (ii) rotation of the central kernel with occasional relaxation
events, or (iii) turbulent motion in the central zone. One can see in the simulations that for a
SNF configuration there is always a convective zone at the null point, and the size of it increases
with B,. For the XPT configuration, there is a threshold valu@gfvhen convection starts. In
general, the closer the configuration is to SNF the larger is the scale of convective motion.

Furthermore, using parameters of a generic mid-size tokamak, one can conclude that in SNF
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configuration, during ELM the scale of convection should be significant for redistribution of
thermal energy across the null-point. On the other hand, for same parameters, in XPT configu-
ration there is virtually no perturbation of plasma pressure and magnetic field. This is consistent
with the TCV experiments where redistribution of thermal energy between primary and sec-
ondary strike points was seen to be particularly large during ELM strikes in near snowflake
configurations [5]. The churning mode can be a significant player in transport of thermal en-
ergy near the null point, in particular during ELMs whgp is large at the null point, and in
particular in near-snowflake configurations. Aside from the direct action of thermal convection,
there may be other effects such as inducing magnetic stochasticity in the null point region due
to perturbation of the poloidal magnetic field.

Note that the churning mode physics is very similar to free thermal convection of neutral
fluid, in a vertical gravity field, driven by a horizontal temperature gradient, as described in, e.g.,
[8, 9, 10]. The hydrodynamics equations that are used for the the thermal convection problem
can be cast in a form very similar to Egs. (1), with the magnetic curvature playing the role
of effective gravity. However one important difference is that the plasma equations have the
restoring term due to magnetic field perturbations which plays the role of “elasticity” resisting

plasma twisting.
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