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Introduction

In next generation tokamak experiments and fusion reactors the divertor heat flux will chal-

lenge conventional means of peak heat flux reduction which makes it urgent to find innovative

approaches to solving the divertor heat exhaust problem. One recent idea for tokamak divertor

is using a higher order null (dubbed “snowflake”) instead of the standard x-point [1]. Snowflake

divertor configuration has a characteristic hexagonal separatrix structure, and it has a number of

geometric properties that may affect edge plasma and may be helpful for alleviating the divertor

heat flux problem: stronger fanning of the poloidal flux, stronger magnetic shear in the edge

region, larger radiating volume, and larger connection length in the scrape-off layer [2].

Theoretical considerations [3, 4] and recent experimental observations from snowflake di-

vertor experiments on several tokamaks indicate that presence of a near-second-order null of

poloidal field may give rise to strong plasma mixing near the magnetic divertor null point,

thereby providing sharing of heat and particle flux between multiple (three to four) strike points

[5, 2].

Further, a semi-quantitative analytic model [6] was proposed to describe plasma dynamics

driven by the pressure gradient and magnetic curvature near the null-point where the poloidal

magnetic field is small. The analytic model predicts oscillatory twisting motion of plasma

(dubbed “the churning mode”) localized at the null point, and the size of the convective zone is

much larger for snowflake than for a regular x-point configuration, for realistic tokamak param-

eters. Although the basic physics of the churning mode has been identified in the analytic model

[6], the assumptions of the analytic model may be too restrictive, in particular, the motion was

postulated to be in a particular form of differential rotation, the role of the resistive dissipation

of the twisted poloidal field was not included, and there was no account for the heat conduc-

tion in the convectively mixed plasma. In the present study the formation of the convective

cell is investigated by direct numerical simulation, solving plasma fluid equations describing

time-evolution of plasma thermal energy and electric and magnetic fields.

Reduced MHD model

The standard ideal MHD equations include equations for mass continuity, momentum bal-

ance, adiabatic gas law, and magnetic induction [7]. The specific interest here is toroidally
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symmetric plasma motion in the vicinity of the null point(R0,Z0), where(R,θ ,Z) are the usual

cylindrical coordinates; so we’ll further assume (i) toroidal symmetry,∂θ =0, (ii) large aspect

ratio, l⊥/R�1, (iii) strong toroidal guide field,BP/Bt �1, and (iv) uniform densityρ=const.

Instead of the cylindrical coordinates we’ll be using more convenient here Cartesian coordinates

(x,y) in the poloidal plane with the origin at the null-point, see Fig. (1),x = R−R0,y = Z−Z0
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Figure 1:Coordinates used for the model

The poloidal magnetic fieldBp is described

by the poloidal flux function ψ(x,y), Bp =

−(1/R0)eθ × ∇ψ, where ∇ = (∂x,∂y), and the

toroidal magnetic field is described by the reference

valueBt0 given at the reference point(R0,Z0), Bt =

eθ Bt0/(1+x/R0). The electric field is described by

axisymmetric potentialφ(x,y), and the fluid veloc-

ity V is poloidal and given byV = −(c/Bt0)(eθ ×

∇φ). From the magnetic induction equation one

can obtain the evolution equation for the poloidal

magnetic flux function, and expressing the poloidal

current from the equation of motion and imposing

a constraint,∇ · Jp=0 one finds an evolution equation for the vorticity which is defined as

ϖ = (c/Bt0)ρ∇2φ . For normalization of the equations, several reference parameters are cho-

sen at the null point (subscripted 0) and at the outer mid-plane:R0, Bt0, P0, amid, Bpmid. These

are combined into a reference speed and time unit:Cs0 =
√

P0/ρ, t0 = amid/Cs0. Length units

are normalized byamid and time units are normalized byt0. Next, the pressure is normalized

by P0 so at the null-point the normalized pressure is 1.0. The poloidal flux is normalized by

ψ0 = BpmidR0amid so the normalized flux is on the order of unity for normalized distance√
x2 +y2∼1. Normalization of the electric potentialφ is such thatVE = [eθ ×∇φ ], soϖ = ∇2φ .

The dissipation coefficients are normalized byamidCs0.

Finally, with dissipative terms added, the equations in normalized form are summarized as

follows 

d
dt

ϖ = 2ε
dP
dy

+
2

βp
{ψ,∇2

ψ}+ µ∇2
ϖ

d
dt

P = χ∇2P

d
dt

ψ = Dm∇2
ψ,

(1)

whered/dt = ∂t +VE ·∇, VE = [eθ ×∇φ ], andϖ = ∇2φ .
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The non-dimensional parameters in the normalized equations are the aspect ratio,ε = amid/R0,

and the poloidal plasma beta,βp = 8πP0/B2
pmid, µ is the kinematic viscosity,χ is the thermal

diffusivity, Dm is the magnetic diffusivity. In the equations one can identify the driving term

arising from the pressure gradient and curvature, the stabilizing forcing term from magnetic

field deformation, and dissipative terms. Note that the toroidal magnetic field does not enter

the normalized equations, and the toroidal geometry effects show up only in the curvature drive

term.

Numerical simulations

For numerical solution, the equations are discretized by finite-difference on a computational

grid and then time-integrated using standard numerical software. The simulations are carried

out in a square domainL×L centered at the null point location. On the domain boundaries the

values of all evolved variables are maintained constant, which is consistent with the expectation

that the studied physical phenomena are localized near the null point.

Figure 2:Plasma vortex forming in SNF con-

figuration

The initial vorticity is ϖ=0, and the initial mag-

netic flux ψ0 is chosen as either a first order null

x-point configuration (XPT),ψ(1) = x2− y2, or as

an exact second order null snowflake configuration

(SNF),ψ(2) = y3−3x2y, or as an inexact second or-

der null configuration, snowflake-minus (SNF-) or

snowflake-plus (SNF+),ψ(2∓) = y3−3x2y±3σ2y,

where for SNF- two first order nulls aligned hori-

zontally and located at(±σ ,0), and for SNF+ two

first order nulls aligned vertically and located at

(0,±σ).

Time-integration of Eqs. (1) shows formation of a

vortex-like structure localized at the null point. De-

pending on the model parameters, there are various

scenarios of evolution: (i) relaxation to a rotated quasi-steady state where the vertical pressure

gradientdP/dy is near zero, or (ii) rotation of the central kernel with occasional relaxation

events, or (iii) turbulent motion in the central zone. One can see in the simulations that for a

SNF configuration there is always a convective zone at the null point, and the size of it increases

with βp. For the XPT configuration, there is a threshold value ofβp when convection starts. In

general, the closer the configuration is to SNF the larger is the scale of convective motion.

Furthermore, using parameters of a generic mid-size tokamak, one can conclude that in SNF
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configuration, during ELM the scale of convection should be significant for redistribution of

thermal energy across the null-point. On the other hand, for same parameters, in XPT configu-

ration there is virtually no perturbation of plasma pressure and magnetic field. This is consistent

with the TCV experiments where redistribution of thermal energy between primary and sec-

ondary strike points was seen to be particularly large during ELM strikes in near snowflake

configurations [5]. The churning mode can be a significant player in transport of thermal en-

ergy near the null point, in particular during ELMs whenβp is large at the null point, and in

particular in near-snowflake configurations. Aside from the direct action of thermal convection,

there may be other effects such as inducing magnetic stochasticity in the null point region due

to perturbation of the poloidal magnetic field.

Note that the churning mode physics is very similar to free thermal convection of neutral

fluid, in a vertical gravity field, driven by a horizontal temperature gradient, as described in, e.g.,

[8, 9, 10]. The hydrodynamics equations that are used for the the thermal convection problem

can be cast in a form very similar to Eqs. (1), with the magnetic curvature playing the role

of effective gravity. However one important difference is that the plasma equations have the

restoring term due to magnetic field perturbations which plays the role of “elasticity” resisting

plasma twisting.
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