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I ntroduction

In a burning plasma the heating comes from the very fast fupreducts themselves. To
ensure effective heating, the fusion products must be garitly confined until they have trans-
ferred their energy to the bulk plasma. Therefore, studieh® confinement of fast ions in
current fusion devices are important. This includes stidiethe interplay between fast ions
and plasma instabilities.

Using velocity-space tomography it is possible to inferfde-ion velocity-space distribution
function directly from measurements [1, 2, 3, 4]. This is eldoy combining measurements
from several fast-ion detectors measuring in the sameitocat position space. Velocity-space
tomography requires knowledge about the velocity-spacsithaty of the fast-ion diagnostics.
This sensitivity is described by so-called velocity-spagegght functions. These have been
formulated for fast-ion [ (FIDA) spectroscopy [5, 6], collective Thomson scatter{(@y S)
[7], neutron emission spectrometry (NES) [8, #Hray spectroscopy (GRS) [10] and neutral
particle scattering (NPA) [11]. A weight functiom, relates a fast-ion measuremes)tio the
full fast-ion velocity distribution functionf.

s— //wf dEdp, (1)

where the integration is with respect to energy and pitcle pitch is here defined a\% with
positive sign in the direction of positive toroidal current is the velocity parallel to the mag-
netic field andv is the speed of the ion. Equation (1) can be discretized gigitinear set of
equations:

S=WF. (2)

The goal is now to calculaté from equation (2). However, this is mathematically an dlspd

inverse problem which can only give sensible results if ttabfem is regularized. There exist
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many different ways to regularize inverse problems. In ttengple shown in this paper we use
truncated singular value decomposition. This is effetyiefiltering method which removes
the finer details in the solution suppressing the effect efrthise in the measurements.

Tomography of a sawtooth crash

FIDA spectroscopy measures Doppler-shifted light emittg@xcited fast neutrals right af-
ter they have undergone charge exchange with injected NBl. idere, we present results of
velocity-space tomographies using coherently averagesgurements taken just before and just
after sawtooth crashes in discharge #30815 in the ASDEX affsgrtokamak [2].
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Figure 1: Central fast-ion velocity distribution funct®hbefore and after
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of sight determines

the projection direction of the velocity distribution aritetefore determines the velocity-space
sensitivity and thus the shape of the weight functions [Bfe Teasurement volume is located
aroundp; = 0.1, well within the sawtooth inversion radius located nga#= 0.3. Figure 1(a)
shows a tomography of the fast-ion velocity distributiondtion calculated using FIDA spectra
measured right before a sawtooth crash. Figure 1(c) shonesoaetical distribution calculated
using TRANSP/NUBEAM [12]. The shaded region at low energ@sespond to low Doppler

shifts in the FIDA spectra. Here the FIDA light cannot be aleed as the halo, the beam emis-
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sion and the cold D-alpha light are much stronger [13]. Sehsémilarities between figures 1(a)
and 1(c) are evident. Most ions have a positive pitch and BifiNl-energy peak at 60 keV can
be seen. However, several discrepancies are evident gesmdicially th& > 40 keV feature at
a pitch around -0.5. This is most likely an artefact introgliby the inversion. The FIDA data in
this discharge contain impurity lines which obscure pdrte@spectra with large Doppler-shifts
which might have been able to suppress this artefact thraugieasured lack of FIDA light.

Figure 1(b) shows a tomography calculated using g

. . e Tomo 2§ keV
data measured right after the sawtooth crash. Figure e Tomo 36 keV

1(d) shows the corresponding TRANSP/NUBEAM 0.6/ ——TRANSP 29 keV .|
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calculation. A clear drop in the distributions carg’ 0
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be seen. Furthermore, the drop in the fast-ion di§-
>

tribution is larger for passing ions compared t§ 0.2
@

trapped ions. To investigate this effect further, the

, : Frefore—F .
relative change is calculated a‘%ﬁ% Figure

2 shows the relative change as a function of pitch-02, 5 e :
for two different energies. Trapped ions with pitch pitch

values around O are redistributed less than pasal_qgc’]ure 2: Relative change in fast ion den-

ions with pitch close to 1. This behaviour has alsscl)ty as a function of pitch for two different

been observed on other machines [14]. For Compgﬁbrgies
ison, the relative change predicted by the Kadomt-

sev model implemented in TRANSP is also shown.
Discussion

As we mentioned in the introduction, the regularization ofiaverse problem is essential
in order to achieve sensible results. Many different reggdéion methods exists. The result
depends on the choice of regularization and it should tbezgbreferably be made based on
knowledge or assumptions about the true solution. A cormapardf inversion methods for
velocity-space tomography will be presented elsewhere.

The inversions can be improved by combining several diffetgpes of fast-ion diagnostics.
For example, the FIDA views at ASDEX Upgrade could be comtbweéh the CTS, NPA and
NES diagnostics. In addition to the benefits gained by inolgidnore measurements, the dif-
ferent diagnostics yield complimentary information abfagt-ion velocity space even if their
projection angle is the same. Examples of weight function&fDA, CTS and NES are shown
in figure 3, all calculated with a projection angle of°1&he weight functions are plotted as

a function ofv| andv, as the differences are more clear in these coordinates. Th#& F
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and CTS weight functions have triangular shapes while th& MEight function is circular.
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We have presented results of velocity-space tomograé:m
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application of the method. Using velocity-space tomogyaph

it is possible to recreate the full fast-ion velocity dibtriion (a) FIDA.

function based on a combination of measurements from difs
ferent detectors, each only measuring a projection of thie cﬁ 2

tribution function. Our tomographic inversion suggeststth 1

passing ions are more affected by the sawtooth crash thans - -iV” S gL 3
trapped ions. 5 CTS.
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