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Introduction

The complex three-dimensional structure of the optimised stellarator Wendelstein 7-X can
only partially be accessed by means of experimental measurements, as a consequence of the
only quite limited number of measurements at distinct locations with different plasma cross-
sections and properties. This highlights the importance of precise modelling (i.e. numerical
bookkeeping) as an extended method for understanding the three-dimensional nature.

A plasma edge simulation code for treating complex magnetic configurations is the fluid
plasma edge Monte-Carlo code in three dimensions (EMC3) [1] coupled to the kinetic (neut-
ral) transport code EIRENE [2, 3]. EMC3 bases on a Monte-Carlo algorithm [4, Ch. 4.1] for a
reduced set of Braginskii equations [5] formulated in a Fokker-Planck scheme while EIRENE
solves extended Boltzmann equations. A detailed ab initio derivation of the EMC3 model equa-
tions can be found in [6, Ch. 2]. EMC3-EIRENE has been continuously improved and verified,
but one remaining restriction was that the bulk ion species is limited to hydrogen isotopes, with
higher-Z ions being treated as trace-impurities.

However, in initial operation phases Wendelstein 7-X (and probably also ITER) will be oper-
ated with helium plasma. For a more direct interpretation of first measurements, computational
quantification of helium plasma flows in the edge is required. Therefore, an approach is presen-
ted and initiated for the simulation of helium plasma by slightly extending EMC3 to facilitate
a treatment of the main plasma species with Z # 1 and expanding the use of EIRENE features
within EMC3, e.g. its existing non-linear mode of operation, metastable resolved reactions and,

most important, currently strongly reduced kinetic trace ion transport module.

Generalization of the EMC3 model equations for Z # 1
The simulation of He** with EMC3 requires a generalization of the considered fluid equation

to Z # 1. In the simply modified equations the particle balance reads

V. [I’LVl”bH _DbJ_bJ_ Vn} = Sion y (1)
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with the plasma density n = n; = n/Z, the parallel ion flow velocity V;, the normalized par-
allel and perpendicular magnetic field vectors bH and b |, and the ionization source Sj,, due to

electron impact collisions with neutrals. The momentum balance reads
V' [minVyy Viyby —mybyby - VViy —Db.b, -V (minVyy)] = =by-Vp+5m, ()

with the ion mass m;, the parallel ion viscosity coefficient 1) (as defined in [5, Eq. 2.22]), the
perpendicular diffusion coefficient D, the plasma pressure p = n.T: + n;T;, and the momentum
source Sy, due to charge-exchange and elastic collisions with neutrals. The electron and ion

energy balances read
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with the electron and ion temperature 7¢ and 7;, the parallel electron and ion thermal conduct-

vity k. and k; (based on [5, Eq. 2.12 and 2.15]), the parallel electron and ion heat diffusivity

Xe and X;, k = 3mene /(miTee) With Tee being the electron collision time (as defined in [5, Eq.

2.5¢]), the energy source of electrons Se . and ions S ; due to plasma-neutral interaction (in-

clusive radiation), and the energy source Sjyp, due to impurity radiation.

The boundary conditions are adapted by generalizing the sound speed ¢s = +/(ZT. + T;) / m;.

Estimates for a typical helium ionisation and population distribution

The ion temperature of a typical plasma edge in a
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single-fluid system with helium in the second ionisation Figure 1: Helium averaged charge state
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pendent of the density from a temperature of about 5 eV the dominant part of the helium ions
is in the second charged state. At a temperature above 10eV a fully ionized helium plasma is
present.

A second estimate on the cor-
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Figure 2: Comparison of density distributions of He**, neutral helium,

tions is ionisation from He rather and He* calculated for typical Wendelstein 7-X limiter plasma with an
L upstream density of njy, = 1 X 103 cm™3 and a heating power of P =
than volume-recombination from 2MW. The radial profiles are taken along the mid-plane near the limiter.

He™™. Thus, it leads to the same

conclusion as the zero-dimensional estimate under non-local-thermodynamic-equilibrium con-
ditions: helium in the second ionisation state is dominant in the bulk of the plasma edge. Fur-
thermore, this can be strengthened by comparing the simulated spatial distribution of He**,
neutral helium and He* near the location of the limiter in a typical limiter discharge at Wendel-
stein 7-X (njup = 1 X 103 cm™3, P = 2MW), see fig. 2. Only in the vicinity of the limiter the
neutral helium density (dashed) is dominant in the scrape-off layer (SOL) but decreases rapidly
in the plasma edge region, magnitudes below the He** density (solid). A similar behaviour is

seen for He™ (dashed).

Numerical treatment of He* and He**

A treatment of He* with a fluid approach is not very appropriate because the short life time of
He* ions prevents thermalisation and therefore a relaxation towards a Maxwellian distribution
of the He™ ions. An adequate treatment of He* is either quasi-static, when the characteristic
transport lengths are much shorter than the length scale of interest, or even kinetic, otherwise.
In the quasi-static approach the ion is stopping at its place of birth until it gets further ionised
or recombines. The simplest approach for a kinetic treatment is the movement along the mag-
netic field lines which is already implemented in EIRENE. Additional effects like ion drifts are
neglected.

The atomic and molecular collision data as originally presented by Janev et. al [9] and

Fujimoto [10] (for helium) are extended and stored in the HYDHEL [11] and AMJUEL [12]
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database to treat the different atomic processes within EIRENE simulations (for further details

on the treatment of helium reactions see [13]). The following atomic processes are considered:

e+He(1|1S) = e+He" +e [12,rx H.4 2.3.9a],
He*" +He — He+He™™" [11,rx H.1/H.3 6.3.1],
e+He" (1s) — He(1|1S) + ... [12,rx H.4 2.3.134],
e+Het - He™  +e+e [12,rx H.4 2.2C].

The dominant ion species He*™ is treated with the fluid approach using the generalized model

for EMC3 as presented above.

Summary and outlook

Using simple estimates it is shown that the dominant helium species in the plasma edge
region is He™ which can be treated with a fluid approach, simulated by the extended model
of the plasma fluid code EMC3. For a sufficient consideration of plasma wall interactions a
treatment of neutral helium and He* is also required which can be performed using the kinetic
transport code EIRENE.

Future studies need to quantify the applicability of a quasi-static over a kinetic approach
for He™ and the use of metastable resolved over unresolved transport. Processes currently neg-
lected like He™™ — H™ recombination [12, rx H.4 2.3.2C] and He-He* charge-exchange [11,
rx H.1/H.3 5.3.1] will be considered via the non-linear collision model of EIRENE.
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