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Introduction

The low-shear concept of Wendelstein 7-X avoids low-order rational flux surfaces in the
plasma core since large magnetic islands can be formed there. In turn, such a resonant surface
is placed at the plasma edge, thus producing an island divertor configuration. In order to pre-
serve these features, which can be destroyed even by the arise of a relatively small bootstrap
current, this current should be compensated by electron cyclotron current drive (ECCD) [1]. In
modern fusion devices the evaluation of the generalized Spitzer function (GSF), which serves
as an ECCD efficiency, is usually performed in the low collisionality limit typical for these de-
vices, where one can effectively use the bounce averaged kinetic equation. At the same time, at
high densities and mild electron temperatures, which can be expected at the initial stage of the
device operation and at the start up of plasma discharge, finite collisionality effects should be
taken into account. Such an approach requires the solution of the high dimensional (4D) drift ki-
netic equation, which is a more difficult task as compared to the 2D bounce averaged equation.
In this work, the impact of finite collisionality effects on ECCD in a high-mirror configuration
of Wendelstein 7-X is studied using a combination of the codes NEO-2 [2], a 4D drift kinetic
equation solver for plasmas with finite collisionality using the full linearized Coulomb collision
operator and realistic device geometry, and TRAVIS [3], a ray-tracing code developed for stud-
ies of electron cyclotron current drive, heating and emission. Recently, this code combination
was used to study the influence of finite collisionality on ECCD in tokamaks, where the gener-
alized Spitzer problem at a given magnetic flux surface is essentially 3D [2]. The 4D problem of
stellarators led to the development of a new interface between the codes based on precomputed
data of NEO-2 for a realistic magnetic model from an equilibrium code and plasma parameter
profiles from a transport code. As in Ref. [2], the non-relativistic limit is used here for the GSF,

which is compared to asymptotic limits of low and high plasma collisionality.
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Code combination within the adjoint approach
A commonly used technique for current drive modeling is the adjoint approach [4], where

the flux surface averaged parallel current density,
: 3
<J|B>=€lc</d3pa—lg)'FRF>, (1)

is expressed by an adjoint GSF g computed by NEO-2 and a microwave induced quasilinear
diffusion flux in phase space I'rp computed by TRAVIS, where (...) denotes flux surface av-
erage, e is the electron charge, B is the magnetic field module and /. is the mean free path [2].
The adjoint function is related by g(v|) = —g(—v)|) to the usual GSF g, which is a solution to

the conductivity problem written in terms of integrals of motion in velocity space as follows,
R B
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Here, v is the parallel velocity, h is a unit vector along the magnetic field, fu is a Maxwellian
and Ly is a linearized collision integral. Cross-field rotation has been ignored in Eq. (2) because
it has small effect on the GSF in finite collisionality regimes as well as at low collisionalities
where the electrons are mostly in the 1/v regime. Therefore, a 4D problem (2) can be reduced
to a 3D problem for a single field line (position on field line is given by a line parameter ¢;)
which is long enough to cover the given flux surface (labeled by the normalized toroidal flux
value s) densely. Representing the energy dependence of the GSF g(r,p) by a series expansion
over normalized Laguerre polynomials of the order 3/2 (Sonine polynomials) L,(,? /) (z), the

solution to Eq. (2) is
S (3/2)
g(r,p) = Z gm(@s, M) L'~ (2), (3)
m=0

where ) = p? /(p?B) and z = p*/(2mT) = mv*/(2T) are the normalized perpendicular adi-
abatic invariant and energy, respectively. The GSF expansion coefficients g, (¢s,n) are com-
puted by NEO-2 using a conservative finite difference scheme on a 2D grid over ¢, and 1 with
an adaptively refined 1-grid in order to resolve the trapped-passing boundary layer. The spatial
dependence of g on Boozer coordinates (s,1, @) required by TRAVIS is reconstructed by an
interface with the help of linear interpolation on a non-uniform 3D grid formed by (discretized

over ¢,) segments of (long enough) field lines representing a prescribed set of flux surfaces.

Results
In this work, two ECCD scenarii in W7-X, namely the X2- and the O2-scenario, are investi-

gated for three different collision models, i.e., long mean free path (LMFP) limit by the internal
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12 — 1 TRAVIS model, finite collisionality by NEO-2 and the
3 10| g%ggg{i%iﬁm ., high-collisional limit using the classical Spitzer func-
§ 8 tion [5]. Profiles of plasma parameters shown in Fig. 1
; === J0s + correspond to the onset of the LMFP regime (colli-
ri ar sionality is roughly three times smaller than needed for
B | the plateau regime). The microwave beam is launched

05 02 01 06 08 106 off axis (Z = —0.1 m) in the horizontal plane with the
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Figure 1: Temperatﬁre, density, effective poloidal launch angle o = 5.5 deg (angle between this
charge and rotational transform profiles

lane and the beam). Dependencies of the total current
over the normalized toroidal flux. p ) p

generated in the plasma on the toroidal launch angle 8
(angle between the beam and the meridian plane containing the launcher) are shown in Fig. 2.
It can be seen that in the standard X2-scenario the current is by 25% different from the LMFP
limit, as it can be expected, while for the advanced O2-scenario the current significantly differs
from both, LMFP and high collisionality limits. In the latter case, characterized by weak absorp-
tion and respectively smaller current, a significant part of this current is produced by particles
from the trapped region. This is better seen from Fig. 3 where the distributions of the absorbed
power and generated current along the microwave beam are shown for § = 18.5 deg. Due to the
strong absorption in the X2 case, most power is absorbed by strongly passing particles, whose
distribution function is not significantly different from the GSF in the LMFP limit, before the
beam reaches the cold resonance. In the O2-scenario weak absorption results in power absorp-
tion and respective counter-current by passing particles on the other side of cold resonance, as
well as in a significant amount of wave energy absorbed by trapped particles whose current is
mainly determined by the position of the absorption region but not significantly by the parallel

wave number [6, 2]. This can be used to increase the total toroidal current.
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Figure 2: Total toroidal current by passing (dashed), trapped (dotted) and all (solid) particles as function
of the toroidal launch angle B for X2-mode (left) and O2-mode (right). The fraction of the absorbed
power Puy [ Pyj is shown for the O2-mode only, since for the X2-mode there is total absorption.



4274 EPS Conference on Plasma Physics P1.164

45 ‘ ‘ 7 ‘ ‘ —

401 — Power absorption (X2) — Power absorption (02) ‘
6 i

= =
= 25r 1 = 4r
=5 =5
§ 20 4 § 3l
= 15 b =
2 .
10} R
51 . 1
0 . | ) 0 L |
0.66 0.68 0.7 0.72 0.65 0.7
[ [m]
100 T T 6 T T
— Low collisional Al Low collisional
ol Finite collisional *|'|— Finite collisional
50 H — High collisional h 2 -{— High collisional

Il Il Il
0.66 0.68 0.7 0.72 0.65 0.7 0.75 0.8 0.85
[ [m] [ [m]

Figure 3: Local power absorption (upper plots) and local current generation (lower plots) for X2-mode
(left) and O2-mode (right) by passing (dashed), trapped (dotted) and all (solid) particles along the ray
trajectory. Cold resonance position at | = 0.73 m is marked by a vertical (cyan) line.

Conclusion

This report extends the ECCD studies for tokamaks [2] to stellarator geometry. The studies
of the X2- and O2-scenarii in a high-mirror configuration of W7-X at the onset of the LMFP
regime show that in the O2-scenario finite collisionality effects play a significant role on ECCD
current, which cannot be approximated by asymptotical collisionality limits. This effect is sig-
nificant also in the X2-scenario, where the current is increased by 25%. Properties of ECCD on
trapped particles can be used to improve the efficiency in advanced (02, X3) scenarii, which
are only available at high densities, where the cut-off prohibits the standard (O1, X2) scenarii.
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