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An accurate predictive model for turbulent transport fluxesdriven by microinstabilities is

vital for the interpretation and optimization of present-day experiments, and extrapolation to

and control of future machines. However, the computationalcost of direct numerical simulation

with massively parallel nonlinear gyrokinetic codes, 104 − 105 CPUh for fluxes at a single

radius, precludes their use for integrated tokamak transport simulations.

Increased tractability is gained by applying transport models based on the quasilinear approx-

imation, largely valid in the core of tokamak plasmas [1, 2].These are validated by comparison

to nonlinear simulations, and have proven successful in reproducing experimental profiles in

many cases. Compared to nonlinear simulations, a∼6 orders of magnitude speedup is gained.

However, their computational speed is still insufficient for applications such as convenient large-

scale scenario development, trajectory optimization, andsimulations for developing real-time

controllers.

We suggest an approach to overcome these challenges. The central point is to emulate the

original transport model with a neural network (NN) nonlinear regression of quasilinear fluxes

previously compiled in a database. The neural network emulator is then orders of magnitude

faster than original flux calculation, and can be used for real-time applications. Neural networks

have been previously applied for regression of DIII-D heat fluxes from experimental power

balance databases [3]. In this work, we suggest to apply the same methodology for code output.

The QuaLiKiz quasilinear gyrokinetic transport model [4, 5] was employed in this work. The

computational time for the QuaLiKiz eigenvalue solver at a single wavenumber is∼1 s.

A database of QuaLiKiz solutions was constructed, in the iontemperature gradient (ITG)

instability regime. The code was run with adiabatic electrons for simplicity. The database covers
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Table 1:Summary of input parameters for the QuaLiKiz adiabatic electron ITG database employed in this work

Parameter Min value Max value No. of points

R/LTi 2 12 30

Ti/Te 0.3 3 20

q 1 5 20

ŝ 0.1 3 20

kθ ρs 0.05 0.8 16

Total no. of points 3 840 000

five input parameters: the driving normalized logarithmic ion temperature gradientR/LTi, the

ion to electron temperature ratioTi/Te, the safety-factorq, the magnetic shear ˆs≡ r
q

dq
dr , and the

normalized wavenumberkθ ρs, whereρs≡
√

Temi/(ZiqeB). The database content is summarized

in table 1. The training sets for the neural network were sifted from this database. Outputs

include growth rates, frequencies, and ion heat flux. We concentrate on the analysis of the ion

heat flux output, which involves a summation over the wavenumbers in the construction of the

quasilinear saturation rule.

A multilayer perceptron neural network is used, which is a nonlinear function with tunable

variables (weights and biases), with the property of universal approximation [6]. Linear combi-

nations of the inputs and biases are propagated through a series of nonlinear transfer function

vectors (named ‘hidden layers’), until eventually linearly combined to an output layer. With two

hidden layers and a single output value (as used in this work), this is represented as:

y= b3+
N

∑
i

w2
i g

(
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M

∑
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(

b1
j +

I

∑
k

win
jkxk

))

(1)

Wherey is the output ‘neuron’ containing the output value (e.g. ionheat flux),xk the vector

of input values,bn the bias vectors,win the M×I weight matrix connecting the input vector to

the 1st hidden layer,w1 the N×M weight matrix connecting the two hidden layers, andw2 the

weight vector connecting the 2nd hidden layer to the output neuron.g is the nonlinear transfer

function, defined as a sigmoid in this work:

g(x) =
2

1+e−2x −1 (2)

Following a series of optimization tests, two hidden layers, as shown in equation 1, were em-

ployed here. The hidden layer sizes M and N were set to 40. The input layer size, I, is 4 for ion

heat fluxes, and 5 for growth rates and frequencies.
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Figure 1: Comparison between normalized

ion heat fluxes obtained directly from Qua-

LiKiz (x-axis) and those from its NN regres-

sion (y-axis)

The key stage is the determination of the op-

timized values of the weights and biases through

fitting a ‘training set’ of predetermined map-

pings, taken from a subset of 35000 QuaLiKiz

database outputs. Following training, the network

output then emulates the original model within the

database input parameter envelope. This is vali-

dated by comparison to validation sets sifted from

the database, chosen different from the training set.

To avoid overfitting the data, regularization tech-

niques were used in the optimization.

A comparison between the regression NN and

QuaLiKiz outputs for a validation set of 10000 un-

stable cases is shown in figure 1. The regression network has an RMS error of 0.77 in gyroBohm

units (χiGB =
T3/2

i m1/2
i

(ZiqeB)2r
) when compared to the validation set. This RMS error is primarily due to

the regularization constraint. The impact of this error on the simulated profiles is minor, due to

stiffness, and corresponds to a∆(R/LTi) = 0.29.
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Figure 2: Comparison of NN parameter

scans (blue solid lines) vs the original Qua-

LiKiz ion heat flux calculations (red dots).

The scans are in R/LTi (top left panel), Ti/Te

(top right panel), q (bottom left panel) and̂s

(bottom right panel)

The typical quality of the fits can be seen in fig-

ure 2, displaying scans of the 4 separate input pa-

rameters while the others remained fixed. Each NN

output is calculated on a sub 10µs timescale in

MATLAB on a Intel(R) Xeon(R) E5450 CPU @

3.00GHz. This is a 5 order of magnitude speedup

compared to the original QuaLiKiz calculations.

A transport model based on the trained neural

network was implemented both in the CRONOS [7]

and RAPTOR [8] integrated modelling codes. We

focus here on the real-time simulation capabilities

offered in RAPTOR.

Presently, RAPTOR only models electron heat

transport. The NN model output was thus modified

to roughly approximate ITG regime electron heat

transport by setting a constantqi/qe = 3. This is based on typical nonlinear and quasilinear

observations in the ITG regime [9, 2].
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In figure 3, we compare a RAPTOR simulation of an ITER hybrid scenario, using the Qua-

LiKiz NN model for electron heat transport, with a simulation of the same case originally carried

out [10] using CRONOS and the GLF23 [11] transport model. A RAPTOR simulation of an en-

tire 300 s ITER discharge took 10 s on a single CPU. This combination of simulation speed

and first-principle modelling is unprecedented. With CRONOS/GLF23, the simulation took 24

hours.
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Figure 3: Comparison between Te predic-

tions for an ITER hybrid discharge carried

out with CRONOS/GLF23 [10] (red curve)

and a RAPTOR simulation using the Qua-

LiKiz NN transport model (blue curve). A

typical H-mode profile (left panel) and time

dependence at mid-radius (right panel) are

shown. The LH transition was set at 100 s.

This computational speed opens up many new

possibilities for real-time controller design and

validation, scenario preparation and optimization,

and real-time discharge supervision. This initial

QuaLiKiz neural network emulator is a proof-of-

principle, and there remains much scope for ex-

panding the number of input dimensions in the

databases used for the fits, as well as employing

slower yet more complete linear gyrokinetic codes

for populating the database. This work is ongoing.
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