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An accurate predictive model for turbulent transport flugesen by microinstabilities is
vital for the interpretation and optimization of presemtytexperiments, and extrapolation to
and control of future machines. However, the computationat of direct numerical simulation
with massively parallel nonlinear gyrokinetic codes? £010° CPUh for fluxes at a single
radius, precludes their use for integrated tokamak tramspaulations.

Increased tractability is gained by applying transport elethased on the quasilinear approx-
imation, largely valid in the core of tokamak plasmas [1,12]ese are validated by comparison
to nonlinear simulations, and have proven successful iroteing experimental profiles in
many cases. Compared to nonlinear simulationsparders of magnitude speedup is gained.
However, their computational speed is still insufficiemtdpplications such as convenient large-
scale scenario development, trajectory optimization, sindilations for developing real-time
controllers.

We suggest an approach to overcome these challenges. Tinel gemint is to emulate the
original transport model with a neural network (NN) nonaneegression of quasilinear fluxes
previously compiled in a database. The neural network etmwuis then orders of magnitude
faster than original flux calculation, and can be used fdrtigge applications. Neural networks
have been previously applied for regression of DIII-D heaxdk from experimental power
balance databases [3]. In this work, we suggest to applyaime snethodology for code output.

The QualLiKiz quasilinear gyrokinetic transport model [iwas employed in this work. The
computational time for the QuaLiKiz eigenvalue solver aingle wavenumber is-1 s.

A database of QuaLiKiz solutions was constructed, in thet@nperature gradient (ITG)

instability regime. The code was run with adiabatic elatsrfor simplicity. The database covers
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Table 1:Summary of input parameters for the QualLiKiz adiabatictetec TG database employed in this work
Parameter Min value Max value No. of points

R/Lri 2 12 30

Ti/Te 0.3 3 20

q 1 5 20

§ 0.1 3 20

kops 0.05 0.8 16
Total no. of points 3840000

five input parameters: the driving normalized logarithnun temperature gradie®/Lry;, the
ion to electron temperature rafi®/Te, the safety-factog, the magnetic shea= a%‘, and the
normalized wavenumbég ps, whereps = +/Tem; /(ZigeB). The database content is summarized
in table 1. The training sets for the neural network wereedifrom this database. Outputs
include growth rates, frequencies, and ion heat flux. We eoinate on the analysis of the ion
heat flux output, which involves a summation over the wavemensin the construction of the
quasilinear saturation rule.

A multilayer perceptron neural network is used, which is alim@ar function with tunable
variables (weights and biases), with the property of us@keapproximation [6]. Linear combi-
nations of the inputs and biases are propagated throughes sémonlinear transfer function
vectors (named ‘hidden layers’), until eventually lingarbmbined to an output layer. With two

hidden layers and a single output value (as used in this wibris)is represented as:
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Wherey is the output ‘neuron’ containing the output value (e.g. h@at flux),xx the vector
of input valuesp” the bias vectorsy™™ the Mx| weight matrix connecting the input vector to
the 1st hidden layew! the NxM weight matrix connecting the two hidden layers, awfdthe
weight vector connecting the 2nd hidden layer to the outpuron.g is the nonlinear transfer
function, defined as a sigmoid in this work:
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Following a series of optimization tests, two hidden layasshown in equation 1, were em-
ployed here. The hidden layer sizes M and N were set to 40.1he layer size, 1, is 4 for ion

heat fluxes, and 5 for growth rates and frequencies.
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The key stage is the determination of the op- 25

timized values of the weights and biases through 20l
fitting a ‘training set' of predetermined map-g
pings, taken from a subset of 35000 QuaLiKig o
database outputs. Following training, the networ% 10r

output then emulates the original model within the 5

database input parameter envelope. This is vali-

dated by comparison to validation sets sifted from 0 > X; ok [yrodichm % 25

the database, chosen different from the training set.

. - o Figure 1:Comparison between normalized
To avoid overfitting the data, regularization tech-

] ] o ion heat fluxes obtained directly from Qua-
nigues were used in the optimization. o _ _
_ _ LiKiz (x-axis) and those from its NN regres-
A comparison between the regression NN and

sion (y-axis)
QualLiKiz outputs for a validation set of 10000 un-
stable cases is shown in figure 1. The regression networka&& error of 0.77 in gyroBohm
units (Xics = %) when compared to the validation set. This RMS error is pripndue to
the regularization constraint. The impact of this error loa $imulated profiles is minor, due to
stiffness, and corresponds t&A@R/L;) = 0.29.

The typical quality of the fits can be seen in fig- TT 1,29, 5=0.86, g1 RIL, =821, 5=0.86, g=1.42
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A transport model based on the trained neural o 2 4008 0123 45
network was implemented both in the CRONOS [7]

and RAPTOR [8] integrated modelling codes. We9ure 2: Comparison of NN parameter
sgans (blue solid lines) vs the original Qua-

compared to the original QuaLiKiz calculations.
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focus here on the real-time simulation capabiliti

offered in RAPTOR.
Th i i (top left 1), /T
Presently, RAPTOR only models electron heat oo arein Rui (top left panel), /Te

__ (top right panel), g (bottom left panel) ard
transport. The NN model output was thus modified _
. . (bottom right panel)
to roughly approximate ITG regime electron heat

LiKiz ion heat flux calculations (red dots).

transport by setting a constagt/ge = 3. This is based on typical nonlinear and quasilinear

observations in the ITG regime [9, 2].



4274 EPS Conference on Plasma Physics P1.166

In figure 3, we compare a RAPTOR simulation of an ITER hybrichse®, using the Qua-
LiKiz NN model for electron heat transport, with a simulatiof the same case originally carried
out [10] using CRONOS and the GLF23 [11] transport model. A R®RTsimulation of an en-
tire 300 s ITER discharge took 10 s on a single CPU. This contibimaf simulation speed
and first-principle modelling is unprecedented. With CROMGIS-23, the simulation took 24
hours.

This computational speed opens up Many NEW r forrer H-moce att=2005 T atp,, 08

12

T, keV]

possibilities for real-time controller design ang
validation, scenario preparation and optimization, ‘
and real-time discharge supervision. This initig|

QuaLiKiz neural network emulator is a proof-of-,

- - -CRONOS w GLF23 B

principle, and there remains much scope for ex-——RraPTorwn quaikiz
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panding the number of input dimensions in the
databases used for the fits, as well as employiagyre 3: Comparison betweeneTpredic-

slower yet more complete linear gyrokinetic cod@gns for an ITER hybrid discharge carried
for populating the database. This work is ongoingut with CRONOS/GLF23 [10] (red curve)
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