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Well collimated electron cyclotron (EC) wave beams are routinely used in present-day toka-

maks for heating, current drive, and for diagnostic purposes. In several applications, turbulent

fluctuations of the density can potentially affect the desired result, broadening the power deposi-

tion profile or altering the spectrum of the probing beam. The theoretical treatment of the prob-

lem is made difficult by the fact that, in general, turbulent fluctuations do not satisfy the WKB

ordering on which most of the tools usually employed for the description of short-wavelength

waves in fusion plasmas rely. On the other hand, an increasing number of theoretical estimates

indicates that beam scattering can be important in particular on reactor-size tokamaks, where

small deviations of the beam trajectory can propagate over large distances and have thus size-

able effects. In this paper, an approach to this problem based on the solution of the wave kinetic

equation, for which a rigorous treatment of the scattering term has been developed, is presented,

and the corresponding numerical implementation in the new code WKBeam is described. First

results for a model distribution of the turbulence are discussed.

Theoretical background

We look for a solution of the wave equation for the wave field E(ω,x),

∇×∇×E(ω,x)−κ2ε̂E(ω,x) = 0, (1)

in the short-wavelength (WKB) limit κ ≫ 1, where κ = Lk0, with L the inhomogeneity scale

of the medium and k0 = ω/c the vacuum wavevector of a wave of fixed frequency ω . In the

previous equation, the coordinate x is normalized to L. The wave equation can be written in

the symbolic form DE = 0, where D is the dispersion tensor. The wave kinetic equation is

constructed starting from the equation for the field correlation DEE† = 0 by applying the Weyl

symbol map. In the case of the field correlation function, the result of the Weyl symbol map is

the Wigner function

W (x,N) =

∫

e−iκN·sE (ω,x+ s/2)E† (ω,x− s/2)ds

(properly speaking, one should talk about a Wigner matrix, due to the vector nature of the

electric field, but this distinction will be ignored here, as in the following we will treat different

42nd EPS Conference on Plasma Physics P1.174



modes of propagation separately; see [1] for a complete discussion).

The Wigner function satisfies an equation equivalent to Eq. (1), which in the limit κ → ∞

leads to:

O(1) : D(x,N)W (x,N) = 0,

O(κ−1) : −
i

2κ
D(x,N)

(←−
∂x ·
−→
∂N−

←−
∂N ·
−→
∂x

)

W (x,N)≡
i

2κ
{D,W}= 0,

where in the last step the Poisson brackets have been introduced. Imposing the condition of non-

trivial solutions for W on the first equation leads to the dispersion relation. The second equation

has the form of a steady state kinetic equation and is used to determined the evolution of the

Wigner function, starting from the antenna plate. If fluctuating and dissipative media are con-

sidered, adopting the ordering D→ D0 +κ−1/2Dfluct +κ−1Dabs (where D0 is the unperturbed,

cold-plasma dispersion operator) leads to the form of the wave kinetic equation considered in

this work:

{D0,W}=−2γW +S (Γ,W ) , (2)

where γ = e∗εae is the absorption coefficient and S the scattering term, which is described in

some more detail below and depends on the density correlation upon its Wigner transform Γ.

The choice of the ordering of the fluctuating term simply reflects the fact that the fluctuation

term appears quadratically in the final result.

The derivation of the scattering operator follows McDonald [2] and relies on the approach of

Ref. [3] which is briefly sketched here, since it represents the most important approximation of

the present approach. Write the wave equation in the compact form (D0+D1)E = 0, where the

ensemble average of the fluctuations part vanishes, 〈D1〉= 0. If E0 is a solution of D0E0 = 0, the

solution of the wave equation can be written as E = E0− (D−1
0 D1)E. We look for an iterative

solution, E = E0− (D−1
0 D1)E0 +(D−1

0 D1D−1
0 D1)E0 + · · · . Truncating at the lowest significant

order (Born approximation) and applying ensemble average yields

D0〈E〉= 〈D1D−1
0 D1〉E0

where to lowest order one can replace E0 with 〈E〉. Applying the same procedure to (D0 +

D1)EE†(D†
0 +D1) = 0 yields

D0〈W 〉= 〈D1W−1
0 D1〉(D0)

−1 + 〈D1D−1
0 D1〉W0,

where the right-hand side leads (applying the Weyl symbol map and the WKB limit) to a scat-

tering term in the form

S =
∫

[

σ(x,N,N′)W (x,N′)−σ(x,N′,N)W (x,N)
]

dN′
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where the scattering cross section σ is

σ(x,N,N′) =
κ4

(2π)3

∣

∣

∣
e†(x,N)(I− ε)e(x,N′)

∣

∣

∣

2

δ (H(x,N′))Γ(x,N−N′).

Note that Γ varies on the scale length of the equilibrium scale (typically the scale of the gradients

driving the turbulence), so that the application of the WKB ordering is justified.

Benchmarks

The previous equations are implemented in the code WKBeam [4], which evolves the Wigner

function along Hamiltonian orbits, including scattering and absorption. Diffraction effects are

accounted for by initializing the rays at the antenna plane according to the Wigner function.

Scattering events are generated along each ray according to the scattering amplitude σ . Rel-

evant quantities (e.g. power deposition profiles) are reconstructed through the corresponding

Monte Carlo estimators (binning in phase space). A detailed code verification in the absence

of turbulence has been performed, i.e. against analytic solutions (free space, lens-like medium,

linear-layer medium) and numerical solutions in tokamak geometry (beam tracing code TOR-

BEAM [5]). See Ref. [1] for some examples. Here we present the first results of a verification

exercise that includes turbulence and relies on the two-dimensional model of Sysoeva et al. [6],

which is based on the same assumptions (Born approximation) as employed in the derivation of

the scattering term implemented in WKBeam.
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Fig. 1. Benchmark of the beam width as obtained from WKBeam (red) against Eq.(11) of Ref. [6] (blue). The green

dashed line shows the result in the absence of turbulence. The fluctuation level δne is 0.5% of the cutoff density in

the left panel, 5% in the right panel.

It is indeed possible to show that the equation (Eq.(11) of Ref. [6]) for the Fourier-transformed

amplitude |aky
|2 of the electric field, which is connected to the Wigner function through the

relation

|aky
|2 =

L2
√

k2− k2
y

2π

∫

W (x,N)dydkx,

can be derived exactly from the wave kinetic equation (2). Fig. 1 shows a very good agreement
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between the beam width resulting from a numerical solution of the equation for |aky
|2 and that

obtained from WKBeam in slab geometry.

Results

Preliminary results obtained with the WKBeam code have been presented in [7]. For ITER,

it has been found that a turbulence layer with a fluctuation level δne/ne ≈ 10% located around

the plasma edge can lead to a broadening of the absorption profile by about a factor of two for

parameters typical of the upper EC antenna, confirming previous estimates.

Fig. 2. Power profile broadening in ITER, homogeneous poloidal distribution of the turbulence (left) vs. the model

of Ref. [8] (right).

Here, we present as an example a comparison of the power deposition profile for ITER men-

tioned above (homogeneous poloidal distribution of the turbulence) with a model which takes

into account the poloidally inhomogenous distribution of the turbulence [8]). For the ITER up-

per launcher, which is located well above the midplane, the effect of turbulence “ballooning”

reduces significantly the impact of the fluctuation on the deposition profile. This result stresses

the importance of a realistic desription of the fluctuations for this analysis.

Note: This work received funding from Fusion for Energy under Grants 161 and 615. The

views expressed in this publication are the sole responsibility of the author and do not necessar-

ily reflect the views of Fusion for Energy.
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