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Introduction

The ideal modes are described by the equations of ideal magnetohydrodynamics (MHD). One

of the most important properties of ideal MHD is that there can be no change in topology of

magnetic flux surfaces. The perturbation of the equilibrium field through δ~B = ∇× (~ξ ×~B) is

the conventional way to represent ideal MHD modes. It was shown [1] that the original topol-

ogy is only conserved if the perturbed field is calculated to all orders in displacement ~ξ . The

simple representation of the MHD code results as a superposition of equilibrium and linearized

perturbed field will result in an island structure which is unphysical for the ideal instabilities [2].

Our method is shown to conserve the magnetic field topology even at experiment relevant per-

turbation amplitude. In order to illustrate possible practical applications, the developed approach

is applied to a real ASDEX Upgrade equilibrium.

Analytical expression for the covariant component of the Lundquist identity

The analytical expression for the change of the magnetic field connected with a finite dis-

placement of the ideally conducting incompressible liquid was derived by Lundquist [3] in

1951. It’s derivation is based on the consideration of the magnetic flux tube deformation by

an arbitrary perturbation and the conservation of the magnetic flux through any element of

a surface wholly composed of lines of force. Finally this expression casts into the so-called

Lundquist identity:

~B(~r0, t) = ~B(~r0−~ξ ,0)+ [~B(~r0 −~ξ ,0) ·∇]~ξ(~r0, t) (1)

Advantages of use of this expression over the standard method of perturbing an equilibrium

magnetic field through δ~B = ∇× (~ξ ×~B) were clearly demonstrated in [1]. In the present work

we generalize this approach to arbitrarily shaped plasmas and perturbations.

First we derived a general expression for the covariant representation of the perturbed mag-

netic field:
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Calculation of the perturbed ASDEX Upgrade field

The choice of the most convenient coordinate system for description of the perturbation arises

from the variation of the poloidal and toroidal components of magnetic field on the equilibrium

flux surface due to toroidicity and shaping of the plasma. As discussed in [4], there is a variation

of the pitch angle along the field line in a general toroidal equilibrium and thus MHD modes can

no longer be described by a single Fourier harmonic in poloidal angle. The proposed solution

of this problem is a mapping of a general equilibrium to a screw pinch like geometry with a

so-called straight field line angle θ∗ instead of a poloidal angle. Such coordinate system, where

coordinates are ρ - normalized poloidal flux, θ∗ -straight field line angle and φ - toroidal angle,

is chosen for the present studies.
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Figure 1: Normalized test per-

turbation profile

In order to demonstrate consistency of the presented method

at realistic plasma shapes, the equilibrium reconstruction of AS-

DEX Upgrade discharge (AUG28746, t = 1.7s) ) is chosen as a

test bed. The equilibrium reconstruction was done with CLISTE

interpretative code [5].

A radial component of the plasma perturbation corresponding

to a single ideal mode can be written as:

ξ (ρ) = ξ0(ρ) · cos(mθ∗−nφ +Φ0) (4)

where Φ0 is the initial phase. The poloidal and toroidal components of ~ξ can be determined

from the additional constraints of incompressibility of the plasma (∇ ·ξ = 0) and the slip motion

condition (∇× (~ξ ×~Bφ ) = 0):
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Figure 2: Contours of the radial

component(ξρ) of the test perturbation

Figure 3: Contours of the "poloidal"(ξθ ∗)

component of the test perturbation

In order to simulate an impact of a localized mode, the radial mode structure shown in Figure 1

was assumed. It consist of a region with a constant displacement and two gradient regions

which represent vanishing of the mode far from the resonant surface. Since the expression

for the θ∗ component of the perturbation contains the first derivative of ξ0(ρ), our function

should be continuously differentiable. Therefore, the shape of the gradient regions was chosen

to be a squared cosine half-wave. The 2D structures of the radial and straight field line angle

components of the m = 2 perturbation are shown on Figure 2 and Figure 3, respectively.
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In this expression, ξ0 defines the perturbation amplitude and the parameters ρ1,ρ2,ρ3,ρ4 the

location of the mode, it’s width and the width of the gradient regions. It is important to mention

here that the perturbation amplitude has to be smaller than the width of the gradient regions.

Otherwise, according to Equation 1, flux surfaces can be moved directly to the region with

ξ0(ρ) = 0, where the convective part of the Lundquist identity is zero and thus the displacement

is not compensated in the gradient regions.

The implementation of our method is performed in three major steps: first, components of

the displacement vector are calculated in the straight field line coordinates, then a coordinate

transformation is made in order to get it’s components in the cylindrical coordinate system

(R,Z,φ) and finally, the cylindrical version of the Lundquist identity is applied. The special

42nd EPS Conference on Plasma Physics P1.175



Figure 4: Flux surfaces of

the equilibrium magnetic

field

-

-

Figure 5: Flux surfaces of

the magnetic field with m =
2 perturbation. ξ0 = 0.05

-

-

Figure 6: Flux surfaces of

the magnetic field with m =
2 perturbation. ξ0 = 0.1

case of an m = 1 mode requires additional treatment since it involves a special point ρ = 0,

where the Jacobian is 0 and thus the coordinate transform is not defined.

Isocontours of the equilibrium and perturbed poloidal flux are shown on Figures 4 5 and 6.

When the perturbation with m = 2 is applied, one sees the expected compression of the flux

surfaces in the horizontal direction and stretching in the vertical one. In the regions with zero

perturbation amplitude, flux tubes remain unperturbed in the case with ξ0 = 0.05. However,

when the amplitude is increased to ξ0 = 0.1, the width of the gradient regions seems to be

insufficient to screen the displacement completely. It is important to point out that no islands

are observed and thus the topology is conserved.

Conclusions

An alternative method of calculating the perturbed magnetic field has been presented. It in-

cludes both an analytical expression for the covariant component of the perturbed magnetic field

and a numerical tool for modification of the ASDEX Upgrade equilibrium field in the presence

of a perturbation. The ability to apply finite (up to experiment relevant amplitudes) perturbations

without breaking the topology is demonstrated.
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