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Introduction

The ideal modes are described by the equations of ideal magnetohydrodynamics (MHD). One
of the most important properties of ideal MHD is that there can be no change in topology of
magnetic flux surfaces. The perturbation of the equilibrium field through 6B = V x (E x B) is
the conventional way to represent ideal MHD modes. It was shown [1] that the original topol-
ogy is only conserved if the perturbed field is calculated to all orders in displacement E . The
simple representation of the MHD code results as a superposition of equilibrium and linearized
perturbed field will result in an island structure which is unphysical for the ideal instabilities [2].
Our method is shown to conserve the magnetic field topology even at experiment relevant per-
turbation amplitude. In order to illustrate possible practical applications, the developed approach

is applied to a real ASDEX Upgrade equilibrium.

Analytical expression for the covariant component of the Lundquist identity

The analytical expression for the change of the magnetic field connected with a finite dis-
placement of the ideally conducting incompressible liquid was derived by Lundquist [3] in
1951. It’s derivation is based on the consideration of the magnetic flux tube deformation by
an arbitrary perturbation and the conservation of the magnetic flux through any element of
a surface wholly composed of lines of force. Finally this expression casts into the so-called

Lundquist identity:
B(fo.1) = B(fo—&.0) +[B(fo — £.0) - VIE (7o.1) (1)

Advantages of use of this expression over the standard method of perturbing an equilibrium
magnetic field through 6B = V x (E x B) were clearly demonstrated in [1]. In the present work
we generalize this approach to arbitrarily shaped plasmas and perturbations.

First we derived a general expression for the covariant representation of the perturbed mag-

netic field:
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where g;; is a metric tensor of the coordinate system for which the magnetic field needs to be

calculated and F’]‘.J are Christoffel symbols, which are defined in the following way:

- (25
Calculation of the perturbed ASDEX Upgrade field

The choice of the most convenient coordinate system for description of the perturbation arises
from the variation of the poloidal and toroidal components of magnetic field on the equilibrium
flux surface due to toroidicity and shaping of the plasma. As discussed in [4], there is a variation
of the pitch angle along the field line in a general toroidal equilibrium and thus MHD modes can
no longer be described by a single Fourier harmonic in poloidal angle. The proposed solution
of this problem is a mapping of a general equilibrium to a screw pinch like geometry with a
so-called straight field line angle 6* instead of a poloidal angle. Such coordinate system, where
coordinates are p - normalized poloidal flux, 8* -straight field line angle and ¢ - toroidal angle,
is chosen for the present studies.

In order to demonstrate consistency of the presented method

at realistic plasma shapes, the equilibrium reconstruction of AS- o

DEX Upgrade discharge (AU G28746,t = 1.7s) ) is chosen as a

0.10]
0.08,

test bed. The equilibrium reconstruction was done with CLISTE o

interpretative code [5].

A radial component of the plasma perturbation corresponding
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to a single ideal mode can be written as:
Figure 1: Normalized test per-
S(p) =So(p) -cos(mb” —n¢ + o) (4 turbation profile

where @ is the initial phase. The poloidal and toroidal components of E can be determined
from the additional constraints of incompressibility of the plasma (V- £ = 0) and the slip motion

condition (V x (E x By) = 0):

% Eo(p) - cos(m* — ng + @)
E=] & =] —2(Co(p)+pE)(p))-sin(mb* —ng + ) )
Eo 0
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Figure 2: Contours of the radial Figure 3: Contours of the "poloidal"(Eg+)
component(&y) of the test perturbation component of the test perturbation

In order to simulate an impact of a localized mode, the radial mode structure shown in Figure 1
was assumed. It consist of a region with a constant displacement and two gradient regions
which represent vanishing of the mode far from the resonant surface. Since the expression
for the 6* component of the perturbation contains the first derivative of &y(p), our function
should be continuously differentiable. Therefore, the shape of the gradient regions was chosen
to be a squared cosine half-wave. The 2D structures of the radial and straight field line angle

components of the m = 2 perturbation are shown on Figure 2 and Figure 3, respectively.
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In this expression, &, defines the perturbation amplitude and the parameters py, P2, p3, P4 the
location of the mode, it’s width and the width of the gradient regions. It is important to mention
here that the perturbation amplitude has to be smaller than the width of the gradient regions.
Otherwise, according to Equation 1, flux surfaces can be moved directly to the region with
&o(p) = 0, where the convective part of the Lundquist identity is zero and thus the displacement
is not compensated in the gradient regions.

The implementation of our method is performed in three major steps: first, components of
the displacement vector are calculated in the straight field line coordinates, then a coordinate
transformation is made in order to get it’s components in the cylindrical coordinate system

(R,Z,¢) and finally, the cylindrical version of the Lundquist identity is applied. The special



4274 EPS Conference on Plasma Physics P1.175

g
05377 16 18 20 105377 16 18 20 L0 Ta 16 18 20
R, m R, m R, m
Figure 4: Flux surfaces of  Figure 5: Flux surfaces of  Figure 6: Flux surfaces of
the equilibrium magnetic ~ the magnetic field with m = the magnetic field with m =
field 2 perturbation. § = 0.05 2 perturbation. £y = 0.1

case of an m = 1 mode requires additional treatment since it involves a special point p = 0,
where the Jacobian is 0 and thus the coordinate transform is not defined.

Isocontours of the equilibrium and perturbed poloidal flux are shown on Figures 4 5 and 6.
When the perturbation with m = 2 is applied, one sees the expected compression of the flux
surfaces in the horizontal direction and stretching in the vertical one. In the regions with zero
perturbation amplitude, flux tubes remain unperturbed in the case with & = 0.05. However,
when the amplitude is increased to &y = 0.1, the width of the gradient regions seems to be
insufficient to screen the displacement completely. It is important to point out that no islands

are observed and thus the topology is conserved.

Conclusions

An alternative method of calculating the perturbed magnetic field has been presented. It in-
cludes both an analytical expression for the covariant component of the perturbed magnetic field
and a numerical tool for modification of the ASDEX Upgrade equilibrium field in the presence
of a perturbation. The ability to apply finite (up to experiment relevant amplitudes) perturbations

without breaking the topology is demonstrated.
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