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Introduction
Toroidal torque generated via neoclassical toroidal viscosity (NTV) [1, 2, 3, 4] caused by ex-
ternal non-resonant, non-axisymmetric magnetic perturbations (TF-ripples, error fields, pertur-
bations caused by ELM mitigation coils away from resonant surfaces) has a significant effect
on toroidal plasma rotation in tokamaks. Besides collisional transport regimes, an important
role (in particular, in ASDEX-Upgrade [4]) is played by resonant transport regimes such as
superbanana-plateau [1] or bounce and bounce-transit resonance [2] regimes where transport
coefficients are independent of the (small) collision frequency. Here, a universal approach by
the canonical Hamiltonian quasilinear formalism in action-angle variables [5] is presented. This
approach is well developed for the general case of small electromagnetic perturbations in toka-
maks (see e.g. [6]). The described treatment covers both trapped and passing orbits in a unified
way and does not require any simplifications of device geometry. Numerical results of NTV
evaluation in resonant transport regimes are presented and compared to references [1, 3].
Toroidal torque and radial transport within canonical Hamiltonian quasilinear theory
Within the action-angle formalism, the quasilinear kinetic equation describing the evolution
of the slowly varying averaged part of the distribution function f0 = f0(J) over the canonical
angles can be cast to the form
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where Jk are the actions, ω is the perturbation frequency, δ (. . .) is the Dirac delta-function.
Summation is assumed over repeated indices i, j and k, and bold typesetting denotes the full
set of three quantities, J = (J1,J2,J3). Splitting H = H0 + H̃ of the Hamiltonian H into an
unperturbed (averaged over angles) part H0 = H0(J) and a perturbation part H̃ leads to the
following definitions of the canonical frequencies Ω j and of the amplitudes Hm = Hm(J) of the
Fourier expansion of H̃ over the canonical angles θ k:

Ω
i =

∂H0
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, H̃ = Re∑

m
Hmei(mkθ k−ωt), (2)

where summation is performed over all three Fourier indices m = (m1,m2,m3). In a tokamak,
two of the actions are the perpendicular adiabatic invariant (up to a constant factor the magnetic
moment) J1 = J⊥ and the canonical toroidal momentum J3 = pϕ respectively given by

J⊥ ≈
mαv2

⊥
2ωcα

, pϕ = mαvϕ +
eα

c
Aϕ ≈ mαv‖hϕ +

eα

c
Aϕ , (3)

where mα , eα and ωcα are α-species mass, charge and cyclotron frequency, respectively, vϕ ,
hϕ and Aϕ stand for the toroidal co-variant components of particle velocity, unit vector along
the magnetic field and vector potential, respectively, and v⊥ and v‖ are perpendicular and paral-
lel velocities (all quantities are defined for the unperturbed magnetic field). In flux (Boozer)
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coordinates (s,ϑ ,ϕ) where s = ψtor/ψa
tor is the toroidal flux normalized by its edge value,

Aϕ = −ψpol(s) is a flux function (poloidal flux). Introducing sϕ = sϕ(pϕ), which is the so-
lution to the second equation in (3) with v‖ set to zero (banana tips in case of trapped orbits),
the poloidal action J2 = Jϑ is defined for both, trapped and passing particles by

Jϑ =
eα

c
Aϑ (sϕ)δt−p + J‖, trapped: δt−p = 0, passing: δt−p = 1, (4)

where Aϑ (s) = sψa
tor and the parallel adiabatic invariant is defined via the bounce average as

J‖ =
mατb

2π
〈v2
‖〉b, 〈a(ϑ)〉b ≡

1
τb

τbˆ

0

dτ a(ϑorb(ϑ0,τ)) . (5)

Here a(ϑ) is any function of poloidal angle and integrals of motion (J⊥,H0,sϕ), ϑorb(ϑ0,τ)
is the (periodic) solution of the unperturbed guiding center (orbit) equations starting at ϑ0
(B(ϑ0) = Bmin), and τb is the bounce time, ϑorb(ϑ0,τb) = ϑorb(ϑ0,0) = ϑ0. Since Ω1 = 〈ωcα〉b
is much larger then the other frequencies, for quasi-static (ω → 0) magnetic perturbations with
perpendicular scale much larger than Larmor radius and banana width only m1 = 0 contributes
significantly in (1). Such Fourier amplitudes correspond to a gyroaverage because the gyrophase
is a linear function of the first canonical angle, φ = θ 1 +∆φ(θ 2,J), while the remaining guid-
ing center variables are independent of θ 1. For a similar reason the Fourier amplitudes of the
Hamiltonian perturbation in the form of a single toroidal harmonic ∝ exp(inϕ) differ from zero
only for m3 = n, since the toroidal angle ϕ is the only coordinate depending (linearly) on the
canonical angle θ 3, as given by a variable transformation in linear order over the Larmor radius,

θ
2 = Ω

2
τ, ϕ = θ

3−qθ
2
δt−p +qϑorb(ϑ0,τ). (6)

Ω2 = Ω2(J) = ωb = 2πτ
−1
b is the bounce frequency and q = q(sϕ) the safety factor. Namely,

within ideal MHD quasistatic electromagnetic perturbations are fully described by perturbations
of the B module on perturbed flux surfaces, B = B0(ϑ)+Re(Bn(ϑ)exp(inϕ)), which results in

Hm =

〈(
mαv2

‖(ϑ)+ J⊥ωcα(ϑ)
) Bn(ϑ)
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〉
b
, (7)

where ϑ =ϑorb(ϑ0,τ) in all functions of ϑ and only m=(0,m2,n) with various m2 contributing
to the result. Thus, the resonance condition given by the δ -function in Eq. (1) is reduced to

m jΩ
j−ω = 0 → m2ωb +nΩ

3 = 0, (8)
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ψa

tor

dΦ
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, (9)

with Φ being the equilibrium electrostatic potential. In Eq. (9) only the contribution of the E×B
drift to the cross-field toroidal rotation frequency Ωtor is given explicitly because ΩtB is rather
complicated. Condition (8) describes all regimes of interest here: The resonance m2 = 0 for
trapped particles corresponds to the superbanana-plateau resonance, m2 = m for passing with
poloidal mode m gives a transit resonance, which is the only one surviving in the infinite aspect
ratio limit where it reduces to a Cherenkov (TTMP) resonance. Finite mode numbers m2 corre-
spond to bounce and bounce-transit resonances for trapped and passing particles, respectively.
In the case of small enough perturbations considered here, quasilinear effects are weak so that
f0 is close to a local Maxwellian. Then Eq. (1) can be replaced by a set of radial transport
equations for the moments of f0. A transport equation of interest is the conservation law of gen-
eralized toroidal momentum, which is obtained by multiplying Eq. (1) by pϕδ (s− scan(θ ,J)),

42nd EPS Conference on Plasma Physics P1.183



integrating the product over phase space and dividing the result by dV/ds,
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where scan is a variable change law, V is the volume within the flux surface and 〈. . .〉 is the
neoclassical “flux surface” average. The flux surface averaged toroidal torque density Tϕ , which
dominates the transport term containing the momentum flux density Fpϕ

, is
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where setting scan ≈ sϕ (ignoring the FLR effects) and using the δ -function made the integra-
tion over angles and J3 trivial. The remaining integration variables were changed from J⊥ and
Jϑ to η = v2

⊥/(v
2B0) and velocity module v. Substituting f0 in (1) by a drifting Maxwellian,

f0 = (2πmαTα)
−3/2nα exp((eαΦ−H0)/Tα), where nα = nα(sϕ) as well as Tα and Φ, for J

satisfying the resonance condition one obtains
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where u = v/vT and vT =
√

2Tα/mα . Relating Tϕ to the flux-surface averaged particle flux den-
sity Γ =−nα(D11A1+D12A2) via the flux-force relation [1] Tϕ =−eαc−1〈|∇ψpol|〉Γ, resonant
transport coefficients follow as
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, (12)

and D12 containing an extra factor u2 in the sub-integrand. Here ηres = ηres(u) are (generally
multiple) roots of Eq. (8) resolved with respect to η .
Numerical implementation, benchmarking results and discussion
Coefficients (12) are computed numerically allowing for the general case of a perturbed
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Figure 1: Superbanana plateau - results of
Eq. (12) (solid) and analytical formula [1]
(dashed). Here Ωref = cTα/(eα ψa

tor) and q is
the safety factor (dash-dotted).

tokamak magnetic field in Boozer coordinates. Bounce
averages are performed via numerical time integration
of zero order guiding center orbits and an effective nu-
merical procedure for root finding for Eq. (8) is realized
using the scalings ωb(u,η) = uω̄b(η) and ΩtB(u,η) =
u2Ω̄tB(η) and pre-computation of ω̄b and Ω̄tB on an
adaptive η-grid. For testing, a circular concentric flux
surface tokamak configuration is used with safety fac-
tor shown in Fig. 1. The perturbation field amplitude in
Eq. (7) is taken as Bn(ϑ) = εMB0(ϑ)exp(imϑ) with
(formally infinitesimal) εM set to 1 in all plots. Nu-
merical results for D11 are normalized below by the
mono-energetic plateau value Dp = πqv3

T/(16Rω̄2
cα)

where R is the major radius, the (0,0) Boozer harmonic
is used for the reference frequency ω̄cα and perturba-

tion wavenumbers (m,n) are indicated in the titles. In Fig. 1 results of Eq. (12) for rela-
tively weak radial electric fields where the superbanana-plateau regime is possible are com-
pared to the analytical large aspect ratio formula of Shaing [1] for a range of aspect ra-
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tio values A. Earlier this formula was shown to be in agreement with computations by the
quasilinear version of the drift kinetic equation solver NEO-2 [3] for A = 10 and the same
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Figure 2: Drift-orbit resonances - Mach number scan for n = 3 (left) and n = 18 (right).

parameters as in Fig. 1. In Fig. (2) Mach number scans of D11 for A = 10 are shown for
ΩtB = 0 what is valid for relatively “large” Mach numbers Mt = ΩtER/vT . Since m = 0,
passing particles contribute little, which corresponds to the regime of bounce resonances.
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Figure 3: Integrand of Eq. (12) and the reso-
nance line for Mt = 0.02 and m2 = 1.

Results are compared to the ripple-plateau regime [7]
where D11 = 4π−1/2nqA2ε2

MDp, to the universal for-
mula of Shaing for collisional transport in bounce-
averaged regimes [1] and to results of NEO-2. The
last two computations were done for very low ν∗ =
5 ·10−5 and n= 3. The sum of resonant and bounce av-
eraged coefficient is seen to be a factor 2 smaller than
the NEO-2 result at intermediate Mach numbers, Mt ∼
0.02. The reason can be seen from Fig. 3 where the in-
tegrand of Eq. (12) and the normalized resonance con-
dition ∆η̄ = (ηres(u)Bmax−1)/(Bmax/Bmin−1) are
plotted for the mainly contributing first bounce har-

monic m2 = 1. Significant contributions lie around u = 1 where the distance between resonance
and trapped-passing boundary is very small, ∆η̄ ∼ exp(−2πm2u/(qMt

√
2A)).

Conclusion
The proposed unified approach treats all resonant NTV regimes in tokamaks in the same man-
ner. A numerical code has been developed for NTV calculations in these regimes without using
model geometry simplifications. A validation for the superbanana plateau regime shows good
agreement to Ref. [1]. For drift-orbit resonances, the toroidal torque from NEO-2 [3] is signif-
icantly higher than the sum of collisional bounce averaged [1] and resonant regimes. This is
due to strong contributions near the trapped-passing boundary. Therefore, collisional boundary
layer analysis will be additionally required even at very low ν∗.
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