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Introduction

Toroidal torque generated via neoclassical toroidal viscosity (NTV) [1, 2, 3, 4] caused by ex-
ternal non-resonant, non-axisymmetric magnetic perturbations (TF-ripples, error fields, pertur-
bations caused by ELM mitigation coils away from resonant surfaces) has a significant effect
on toroidal plasma rotation in tokamaks. Besides collisional transport regimes, an important
role (in particular, in ASDEX-Upgrade [4]) is played by resonant transport regimes such as
superbanana-plateau [1] or bounce and bounce-transit resonance [2] regimes where transport
coefficients are independent of the (small) collision frequency. Here, a universal approach by
the canonical Hamiltonian quasilinear formalism in action-angle variables [5] is presented. This
approach is well developed for the general case of small electromagnetic perturbations in toka-
maks (see e.g. [6]). The described treatment covers both trapped and passing orbits in a unified
way and does not require any simplifications of device geometry. Numerical results of NTV
evaluation in resonant transport regimes are presented and compared to references [1, 3].

Toroidal torque and radial transport within canonical Hamiltonian quasilinear theory

Within the action-angle formalism, the quasilinear kinetic equation describing the evolution
of the slowly varying averaged part of the distribution function fy = fy(J) over the canonical
angles can be cast to the form
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where J; are the actions, o is the perturbation frequency, 6(...) is the Dirac delta-function.
Summation is assumed over repeated indices i, j and k, and bold typesetting denotes the full
set of three quantities, J = (J1,J2,J3). Splitting H = Hy + H of the Hamiltonian H into an
unperturbed (averaged over angles) part Hy = Hy(J) and a perturbation part H leads to the
following definitions of the canonical frequencies Q/ and of the amplitudes Hy, = Hy, (J) of the
Fourier expansion of H over the canonical angles 6
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where summation is performed over all three Fourier indices m = (m,my,m3). In a tokamak,
two of the actions are the perpendicular adiabatic invariant (up to a constant factor the magnetic
moment) J; = J and the canonical toroidal momentum J3 = py, respectively given by

maV%_

€a €a
J = =mgvp+—Ap = mgvjhy+ —A 3
1 20g Po ave T "4 aV||e - oo (3)
where mg, eq and @.q are o-species mass, charge and cyclotron frequency, respectively, v,
he and Ay, stand for the toroidal co-variant components of particle velocity, unit vector along
the magnetic field and vector potential, respectively, and v, and v are perpendicular and paral-
lel velocities (all quantities are defined for the unperturbed magnetic field). In flux (Boozer)
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coordinates (s,1,@) where s = Yo/ W, is the toroidal flux normalized by its edge value,
A = —Whoi(s) is a flux function (poloidal flux). Introducing sy = s¢(py), which is the so-
lution to the second equation in (3) with V|| set to zero (banana tips in case of trapped orbits),
the poloidal action J, = J is defined for both, trapped and passing particles by

Js = e—aAg(s(p)S,_p +J|, trapped: 6;_, =0, passing: 6,—, =1, %)
c

where Ay (s) = sy, and the parallel adiabatic invariant is defined via the bounce average as
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Here a(¥) is any function of poloidal angle and integrals of motion (J,Hp,S¢), Uor (Do, T)
is the (periodic) solution of the unperturbed guiding center (orbit) equations starting at ¥
(B(%) = Bmin), and 7, is the bounce time, Sorp, (%0, Ty) = Vorp (D0, 0) = Do. Since Q! = (@eq)p
is much larger then the other frequencies, for quasi-static (w — 0) magnetic perturbations with
perpendicular scale much larger than Larmor radius and banana width only m; = 0 contributes
significantly in (1). Such Fourier amplitudes correspond to a gyroaverage because the gyrophase
is a linear function of the first canonical angle, ¢ = 6' + A¢(62,]J), while the remaining guid-
ing center variables are independent of 8'. For a similar reason the Fourier amplitudes of the
Hamiltonian perturbation in the form of a single toroidal harmonic o< exp(in¢) differ from zero
only for m3 = n, since the toroidal angle ¢ is the only coordinate depending (linearly) on the
canonical angle 63, as given by a variable transformation in linear order over the Larmor radius,

6% = Q’r, @ =0 —q0%8_,+qBm(, 7). (6)

Q*=Q*J) = w, =277, !is the bounce frequency and g = g(se) the safety factor. Namely,
within ideal MHD quasistatic electromagnetic perturbations are fully described by perturbations
of the B module on perturbed flux surfaces, B = By(1¥) +Re (B, (1) exp(in@)), which results in
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where ¥ = Oo (Y, 7) in all functions of ¥ and only m = (0, my,n) with various m; contributing
to the result. Thus, the resonance condition given by the 6-function in Eq. (1) is reduced to

mQ —o=0 — mae,+nQ’ =0, (8)
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with ® being the equilibrium electrostatic potential. In Eq. (9) only the contribution of the E x B
drift to the cross-field toroidal rotation frequency Q, is given explicitly because ;p is rather
complicated. Condition (8) describes all regimes of interest here: The resonance my = 0 for
trapped particles corresponds to the superbanana-plateau resonance, m,; = m for passing with
poloidal mode m gives a transit resonance, which is the only one surviving in the infinite aspect
ratio limit where it reduces to a Cherenkov (TTMP) resonance. Finite mode numbers m, corre-
spond to bounce and bounce-transit resonances for trapped and passing particles, respectively.

In the case of small enough perturbations considered here, quasilinear effects are weak so that
fo is close to a local Maxwellian. Then Eq. (1) can be replaced by a set of radial transport
equations for the moments of fj. A transport equation of interest is the conservation law of gen-
eralized toroidal momentum, which is obtained by multiplying Eq. (1) by pyd (s — scan(0,J)),
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integrating the product over phase space and dividing the result by dV /ds,
0 ds d [dV
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where sc,, 1S a variable change law, V is the volume within the flux surface and (...) is the

neoclassical “flux surface™ average. The flux surface averaged toroidal torque density Ty, which
dominates the transport term containing the momentum flux density ), is
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where setting scan = s¢ (ignoring the FLR effects) and using the J-function made the integra-
tion over angles and J3 trivial. The remaining integration variables were changed from J, and
Jo ton =v]/( 230 and velocity module v. Substituting fo in (1) by a drifting Maxwellian,
fo = 2rmeTe) 3 ngexp((eq® — Ho)/Te), Where ng = ng(se) as well as T, and @, for J
satisfying the resonance condition one obtains
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where u =v/vy and vi = /2Ty /mg. Relating Ty to the flux-surface averaged particle flux den-
sity I' = —ng (D11A1 + D12A2) via the flux-force relation [1] Ty = —egc ! (|V¥pol|)I, resonant
transport coefficients follow as
—1
) , (12)
N="res

and Dj, containing an extra factor u? in the sub-integrand. Here TMres = Myes (1) are (generally
multiple) roots of Eq. (8) resolved with respect to 7.
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Numerical implementation, benchmarking results and discussion

Coefficients (12) are computed numerically allowing for the general case of a perturbed
tokamak magnetic field in Boozer coordinates. Bounce
j averages are performed via numerical time integration

m=0, n=3

! of zero order guiding center orbits and an effective nu-

1/A

merical procedure for root finding for Eq. (8) is realized
using the scalings @, (u,n) = u@,(n) and Qp(u,n) =
u?Q,p(n) and pre-computation of @, and Q;z on an
adaptive n-grid. For testing, a circular concentric flux
surface tokamak configuration is used with safety fac-
tor shown in Fig. 1. The perturbation field amplitude in
Eq. (7) is taken as B,(1®) = gyBo(®)exp(im®) with
(formally infinitesimal) &y, set to 1 in all plots. Nu-

merical results for D; are normalized below by the
mono-energetic plateau value D, = mqv3./(16R®Z,)
(dashed). Here Quer = cTo/(eq W) and g is  where R is the major radius, the (0,0) Boozer harmonic
the safety factor (dash-dotted). is used for the reference frequency @.q and perturba-
tion wavenumbers (m,n) are indicated in the titles. In Fig. 1 results of Eq. (12) for rela-
tively weak radial electric fields where the superbanana-plateau regime is possible are com-
pared to the analytical large aspect ratio formula of Shaing [1] for a range of aspect ra-

Figure 1: Superbanana plateau - results of
Eq. (12) (solid) and analytical formula [1]
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tio values A. Earlier this formula was shown to be in agreement with computations by the
quasilinear version of the drift kinetic equation solver NEO-2 [3] for A = 10 and the same
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Figure 2: Drift-orbit resonances - Mach number scan for n =3 (left) andn =18 (right).

parameters as in Fig. 1. In Fig. (2) Mach number scans of D;; for A = 10 are shown for
Q,;p = 0 what is valid for relatively “large” Mach numbers M, = Q,zR/vy. Since m = 0,
passing particles contribute little, which corresponds to the regime of bounce resonances.
_A10,m=0,n=3 : Results are compared to the ripple-plateau regime [7]
‘ where Dy = 4r—1/ anAzef/[Dp, to the universal for-
mula of Shaing for collisional transport in bounce-
averaged regimes [1] and to results of NEO-2. The
last two computations were done for very low v* =
5-107> and n = 3. The sum of resonant and bounce av-
eraged coefficient is seen to be a factor 2 smaller than
the NEO-2 result at intermediate Mach numbers, M; ~
0.02. The reason can be seen from Fig. 3 where the in-
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subintegrand of Eq. (12) [a.u.]
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0 0s ; 15 2 tegrand of Eq. (12) and the normalized resonance con-
Figure 3: Integrand of Eq. (12) and the reso- dition A7) = (Tlres(u)BmaX - 1) / (Bmax/Bmin - 1) are
nance line for M; = 0.02 and m; = 1. plotted for the mainly contributing first bounce har-

monic my = 1. Significant contributions lie around # = 1 where the distance between resonance
and trapped-passing boundary is very small, A7} ~ exp(—27mmyu/(gM;v/24)).
Conclusion

The proposed unified approach treats all resonant NTV regimes in tokamaks in the same man-
ner. A numerical code has been developed for NTV calculations in these regimes without using
model geometry simplifications. A validation for the superbanana plateau regime shows good
agreement to Ref. [1]. For drift-orbit resonances, the toroidal torque from NEO-2 [3] is signif-
icantly higher than the sum of collisional bounce averaged [1] and resonant regimes. This is
due to strong contributions near the trapped-passing boundary. Therefore, collisional boundary
layer analysis will be additionally required even at very low v*.
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