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Introduction

The Lagrangian of the Guiding Centre (GC) motion of a charged particle is £ = (A +py- B) .
v+ ué — H, where A and B are the vector potential and the magnetic field respectively, v is the
guiding centre velocity, 4 the magnetic moment, &, the gyrophase, p) the parallel velocity to
the magnetic field, normalized with B and H = pﬁB2 /2 + B+ @ the Hamiltonian, with & the
electric potential [1]. All quantities are evaluated at the guiding centre and normalized with re-
spect to the nominal magnetic axis gyrofrequency and the major radius R. It has been shown
that, when the magnetic coordinate system is appropriately chosen, the dynamical system is
Hamiltonian and one can define P; and P, to be the canonical poloidal and toroidal momenta
respectively [2]. In axisymmetric equilibria, the canonical position y is ignorable and Py is
conserved, so that the dynamical system, being reduced to one Degree Of Freedom (DOF), is
integrable. However, the motion in phase space is non—trivial and there is no straightforward
way to predict the behaviour of the system when perturbations are introduced and the integra-
bility is lost.

In this paper we present a method for transforming any dynamical system describing the GC
motion of a given axisymmetric equilibrium to an action angle (AA) phase space, where the
study of the dynamics is significantly simplified. We demonstrate how this procedure makes it
remarkably easy to pinpoint the location and the resonances in the presence of perturbations,
as well as determine the conditions for nonlinear interaction due to stochastization, synergy

between different perturbations, and confinement loss.

The Action Angle Transform

The conserved canonical momenta Py and u are already the actions of the toroidal motion
and the gyromotion respectively. The AA pair (/,0) of the poloidal motion is found by inte-
grating along a closed orbit in the poloidal plane. By virtue of the Liouville—Mineur—Arnlold
theorem, such a transform always exists locally. In particular we can cover all phase space with

a measurable set of AA transforms, one for each phase space region that is bounded by a sep-



4274 EPS Conference on Plasma Physics P1.186

aratrix. From now on we shall call such a region a continent, while the set of transforms for
all regions is called an atlas. In each continent such a transform is implicitly generated by a
generating function of the form F, = F (T,J Py /,L). Dependence of F; on Py, and u implies

that y is also transformed to an angle variable

Z = %—fx(fveapxaﬂ) (1)

and so does &. Therefore, this procedure generates the transform to the AA pairs (PX, )'() and
(/.L, 5_) In the AA phase space, the actions J, P, and u remain constant, while the angles 6, ¥

and & evolve linearly in time, with frequencies wg, @y and Q. respectively.

Orbital spectrum analysis

A perturbation of the form 6B =V x 6B can be straightforwardly included in the guiding
centre Hamiltonian as H = (p. — 6)*B*/2+ uB+®, p. = p + o. This introduces a first and
second order perturbation Hamiltonian term. Any perturbation with physical meaning should be
given in terms of the magnetic coordinates, or even the lab coordinates. The first order Hamil-
tonian H is proportional to o. Due to the nonlinear depencence of ¥ on 0 (eq. 1), a monochro-
matic mode ¢ = A, , (y¥)exp (i (my +nt— wr)) in the magnetic coordinates gives an infinite

series of modes in the AA phase space, so that
Z J P){ (m)'c—i—s@—a)t)’ (2)

where

%} (J Px % ei(nr+nfx(J,Px,e)fse)de' (3)

J ,Py=const.

As equation eq. 2 indicates, the resonances of the perturbation are located in action space at

the points where the resonance condition
oy (J,Py, 1) +5s 09 (J,Py,pt) —0 =0 4)

is met. The location of the resonances in action space depends only on the spectral parameters m
and . The actual profile of the perturbation, i.e the depencence on n or , is relevant in defining
the amplitude of the resonant terms, but not in pinpointing their location in the orbital spectrum.
Since s can take on any integer value, each bounded continent contains an infinite number of
such frequencies, most of which are located in the narrow chaotic sea near the separatrix, where

g approaches zero. In the bulk of each continent there are only a few, if any, sites where eq. 4



4274 EPS Conference on Plasma Physics

P1.186

05F Wall

Separatrix

(a) Resonance chart. The solid black lines depict the energy surfaces, crosses and stars correspond to resonances

with m = 10 and m = 8 respectively.

.
4
;’i,

(b) Poincare plot on the surface A of Fig la for
two modes with subcritical amplitude. The semi-
analitically calculated positions of the resonances
as well as their widths are denoted with solid and
dashed lines respectively.

(c) The same Poincare plot for perturbations with
critical amplitude. KAM lines between the two res-
onances have been destroyed and significant redis-
tribution can take place.

Figure 1: Inspection of the resonance chart can reveal the phase space regions when mode synergy can be
significant. The analytically calculated resonance positions, width and overlap conditions are in excellent

agreement with the simulations.

1s satisfied.

The case of time independent perturbations is particularly simple, but rather indicative of

the power of the AA transform and the orbital spectrum transform. Near a particular resonance

m ®y +s wg = 0, the dynamics follow a pendulum- like Hamiltonian and a trapped area of
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width proportional to the square root of the perturbation amplitude is formed. The width de-
pends on JZ , (J , Px) and can be easily calculated once the AA transform has been performed.
The Hamiltonian is conserved and the quantity P, —m/sJ is an adiabatic invariant. The cases
where the ratio m/s or s/m becomes very large are of little interest, since the adiabatic invariant
coincides with one of the actions, so that no significant redistribution takes place.

Coexistence of more than one resonances on the same energy surface can lead to chaotic
redistribution, due to destruction of the adiabatic invariant. Chiricov criterion, which relies on
resonance overlap, provides a very good estimation of the required conditions for chaotic mo-
tion. Figure 1a depicts the chart of the m = 10 and m = 8 resonances in a banana continent of
a peaked large aspect ratio equilibrium. As demonstrated by Figs. 1b, 1c, inspection of the res-
onance chart and employment of the orbital spectrum transform (Eq. 3) provides useful insight

on the dynamics of the perturbed phase space.

x107

(a) Poincare cut for the energy surface B of Fig la  (b) The same, with amplitude 0.3 achirikoy. Al-

and subcritical amplitude 0.08 acpjirikov- Only two  though, this is still subctitical, the KAM surfaces

of the resonances have partially overlaped. have been destroyed. Chirikov criterion overesti-
mates the critical amplitude, by ignoring higher or-
der resonances.

Figure 2: The AA transform as a tool for estimating conditions for confinement loss. The outer closed
flux surface is marked with a thick dashed line.

The case of the energy surface B in Fig la is of particular importance, because there is a
line of resonances linking a deeply trapped part of phase space to the plasma wall (dashed blue
line), provided that all consecutive resonances overlap. Chirikov criterion determines the critical
amplitude at a.y = 1.2- 103, which is an overestimation, due to the strong presence of higher

order resonances, as demonstrated in Fig. 2.
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