

Investigation of spontaneous magnetic fields generated under different regimes of laser-produced plasma creation

T. Pisarczyk¹, S. Gus'kov^{2,3}, R. Dudzak^{5,6}, T. Chodukowski¹, J. Dostal^{5,6},
 N.N. Demchenko^{2,3}, P. Korneev³, Z. Kalinowska¹, M. Kalal⁴, O. Renner⁶, M. Shmid⁶,
 S. Borodziuk¹, E. Krouský^{5,6}, J. Ullschmied^{5,6}, J. Hrebicek^{5,6}, T. Medrik^{5,6}, J. Golasovský^{5,6},
 M. Pfeifer^{5,6}, J. Skala^{5,6}, P. Pisarczyk⁷

¹ Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland

² P.N. Lebedev Physical Institute of RAS, Moscow, Russian Federation

³ National Research Nuclear University (Moscow Eng. Phys. Inst.), Russian Federation

⁴ Czech Technical University in Prague, FNSPE, Prague, Czech Republic

⁵ Institute of Plasma Physics ASCR, Prague, Czech Republic

⁶ Institute of Physics ASCR, Prague, Czech Republic

⁷ Warsaw University of Technology, ICS, Warsaw, Poland

Shock ignition (SI) approach [1] currently becomes one of the most promising scenarios of target ignition in the inertial confinement fusion (ICF). One of the main research aims related to the SI is the understanding of ablation pressure generation mechanisms at different irradiation conditions. The corresponding investigations were carried out on PALS facility with different diagnostics [2-6]. From the SI point of view, particularly interesting is the initial phase of the expansion, related to the interaction of the laser pulse with the generated plasma. In this phase different processes of anomalous absorption, responsible for the generation of fast electrons, appear and the electric and magnetic fields are created. These fields can significantly modify plasma parameters and transport of fast electrons to the ablation surface affecting the formation of the shock wave ablation pressure.

For the experimental studies of these processes, the interferometry and polarimetry are highly demanded at the early phase of the laser plasma expansion, provided a sufficiently short diagnostic pulse would become available. This requirement was fulfilled by a two-channel polaro-interferometer, sketched in Fig. 1, irradiated by 40 fs Ti:Sa laser working at the wavelength of 808 nm.

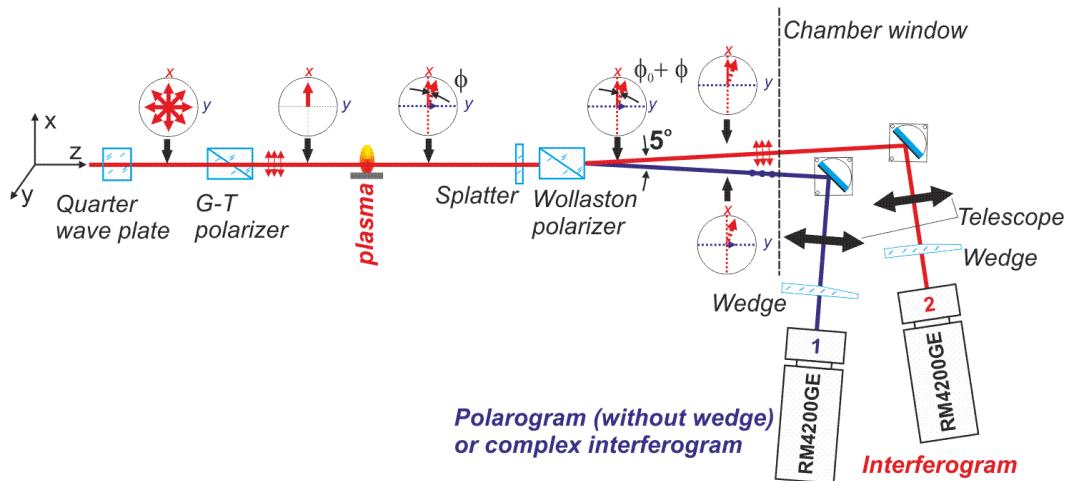


Fig. 1 Optical scheme of the two-channel polaro-interferometer.

Two-channel polaro-interferometer consists of two channels which provide a possibility to measure the magnetic fields in two ways depending on the optical configuration of the polarimetric channel. In the first case, a polarogram and an interferogram are recorded in each channel and magnetic field distribution in plasma are calculated on the basis of the Faraday rotation angle and the electron density distributions. In an alternate case, instead of

the polarogram, a complex interferogram can be registered via an initial rotation of the polarization plane with a wedge added in the polarimetric channel (see Fig. 1). Information about magnetic field distribution can be obtained directly on the basis of the amplitude-phase analysis of the interferogram [7].

In the presented preliminary studies planar targets made of materials with different atomic numbers (plastic and Cu) were illuminated by the 1 ω laser beam with energy range of 250-500 J, focused to the minimum possible focal spot radius - $R_L=50$ μm . A methodology presented in [8-10] was used for polaro-interferometric measurements. To ensure the optimal registration conditions in the polarimetric channel, the measurements at the initial angle of rotation of the polarizer of $\varphi_0 = 2^\circ$ were carried. The polarograms with corresponding interferograms illustrate the interaction of the 1 ω laser beam at the energy about 250 J with the plastic targets are shown in Fig. 2a, while in the case of the Cu targets and the same experimental conditions are presented Fig. 2b.

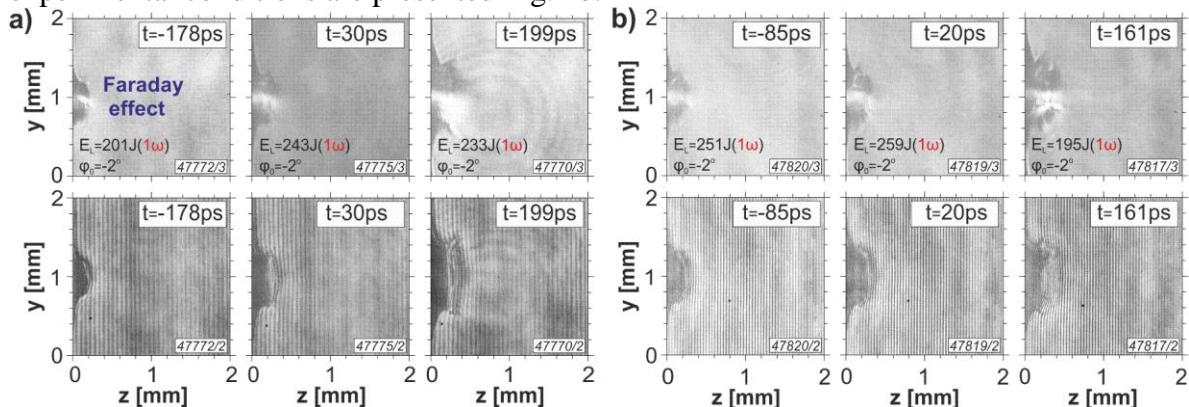


Fig. 2 Sequence of polarograms with corresponding interferograms registered for the 1 ω laser beam interaction with the planar massive targets made of: a) plastic and b) Cu.

The Faraday effect, clearly visible in both polarograms, demonstrates a proper functioning of the polaro-interferometer. The effect is visible only in the bottom half polarograms, which proves that the spontaneous magnetic fields (SPM) have azimuthal symmetry.

One of the goals of such research was to prove the influence of the character of the ablative plasma expansion on the SPM structure, namely: (i) the spherical expansion of the fast component in the case of the light target material (plastic) and (ii) planar (axial) expansion which is enforced by a heavy Cu plasma [11]. To obtain the distribution of the magnetic field, the methods of analysis described in papers [6] have been applied. In the case of the axial plasma symmetry, the equations describing the relations between the Faraday rotation angle (φ), the distribution of phases (δ) and the plasma parameters are applied, namely:

$$\varphi(y) = 5.24 \cdot 10^{-17} \cdot \lambda^2 \int_y^R \frac{B_\varphi(r) n_e(r) y dr}{\sqrt{r^2 - y^2}} \quad (1)$$

$$\delta(y) = 8.92 \cdot 10^{-14} \cdot \lambda \int_y^R \frac{n_e(r) dr}{\sqrt{r^2 - y^2}} \quad (2)$$

where: $B_\varphi(r)$ - the azimuthal magnetic field distribution, $n_e(r)$ -electron density distribution, λ - the wavelength of a probe beam.

Expressions (1) and (2) reduce simply to an integral Abel equation [10]:

$$S(y) = 2 \int_y^1 \frac{f(r) dr}{\sqrt{r^2 - y^2}} \quad (3)$$

For the case (1) the transformation is given by:

$$f_B(r) = 2.62 \cdot 10^{-17} \cdot \lambda^2 R \left[\frac{B_\varphi(r) n_e(r)}{r} \right] \text{ and } S_B(y) = \frac{\varphi(y)}{y} \quad (4)$$

and for (2) it is:

$$f_n(r) = 4.46 \cdot 10^{-14} \cdot \lambda R n_e(r) \quad \text{and} \quad S_n(y) = \delta(y) \quad (5)$$

Substitution of $n_e(r)$ from (4) to (5) gives for $B_\phi(r)$:

$$B_\phi(r) = \frac{1.7 \cdot 10^3}{\lambda} \cdot \left[\frac{r f_B(r)}{f_n(r)} \right] \quad (6)$$

To solve this equation and find the magnetic field distribution $B_\phi(r)$, the FFT Abel inversion method was used. The SPM distributions for the different expansion time moments, as a result of the 1ω laser beam interaction with the planar massive plastic target are presented in Fig. 3a, while Fig. 3b shows distributions which correspond to Cu target for the same laser pulse parameters.

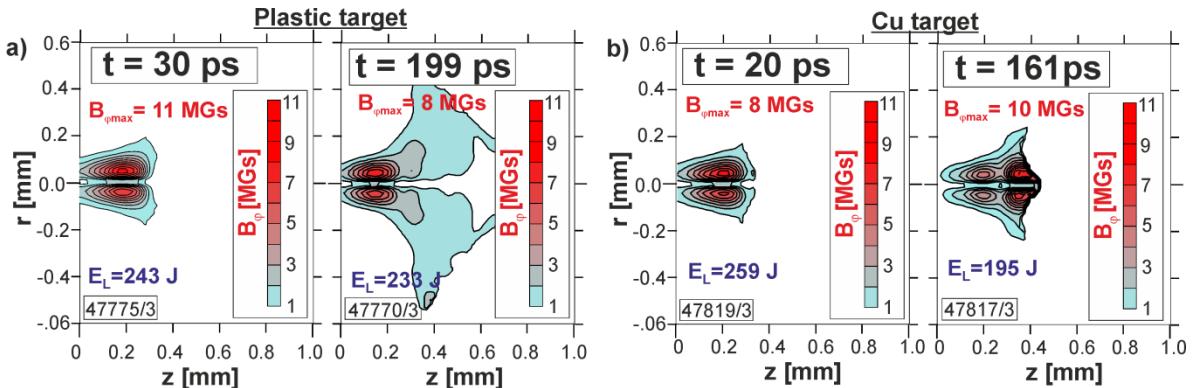


Fig. 3 2D distributions of the SPM in the ablative plasma during the 1ω laser beam interaction with: a) the plastic and b) Cu target for two different expansion times related to the maximum intensity of the laser pulse.

From the Fig. 3a maximum value of SPM about 10 MGs is seen in the vicinity of the target surface does not significantly change during the action of the laser pulse. However, the distribution of the SPM changes distinctly with the time, while the ablative plasma expands. The spherical expansion of the more fast light plasma from a plastic target causes that the distribution of SPM is becoming clearly divergent at the expansion time moment $t=199$ ps (*it resembles the effect of fountain stream*). The SPM distributions generated at different expansion times, as a result of the 1ω laser beam interaction with the planar Cu massive target, are shown in Fig. 3b. The influence of the planar plasma expansion is clearly seen in this case. In contrast with the plastic plasma, total current cross-section flows in a plasma column within diameter not exceeding 0.5 mm. Moreover, the distribution of the SPM in the plasma column clearly differs from the distribution for the case of light plastic plasma. These distributions prove that the axial expansion of the heavy plasma significantly reduces the divergence angle of the *fountain flow* of electrons from the front part of the plasma column. Due to this fact, the maximum amplitude of the SPM at the front of the plasma column is larger than the one in the vicinity of the target and reaches a value of about 10 MGs.

For a more consistent theoretical analysis of the expanding plasma parameters and the SMF, the general plasma transport relations may be useful. Following [12], the equation for the magnetic field balance with plasma parameters may be written as follows (the small items are omitted for simplicity):

$$\frac{\partial \vec{B}}{\partial t} + \frac{c^2}{4\pi} \nabla \times \frac{\nabla \times \vec{B}}{\sigma} - \nabla \times (\vec{v} \times \vec{B}) - \frac{c}{e} \nabla \times \frac{\nabla p + \vec{R}_T}{\partial t} = 0, \quad (7)$$

where t is time, c is the light velocity, σ is the plasma conductivity, v is the plasma flow velocity, e is the electron charge absolute value, $p \approx n_e T_e$ is the plasma pressure, $\vec{R}_T \sim n_e \nabla T_e$ is the so-called thermo-force, T_e is the electron temperature. From Fig.2 it follows that the characteristic distances are $\sim 30 \mu\text{m}$ and times $\sim 100 \text{ ps}$, measured in the experiment;

measured densities of plasma flow $n_e \approx 3 \times 10^{19} \text{ cm}^{-3}$ (not shown in figures), and the plasma temperature for the considered laser parameters has the order of $T_e \sim U_p \sim 3 \text{ keV}$, where U_p is the ponderomotive energy. Considering estimations for \vec{R}_T and σ from [12], for the third and fourth items in eq. (7) we find the scaling $\sim 10^{16..17} \text{ Gauss/sec}$. Then, the first item $\frac{\partial \vec{B}}{\partial t} \sim \vec{B} / 10^{10} \text{ sec}^{-1}$ leads to the estimation value of magnetic field as several Megagauss. While the third item in (7) regulated the relation between the flow velocity and SPM, the main effect for the SPM generation comes from the last item in (7), which contains the gradient of the electron temperature T_e .

Conclusions: It should be emphasized that the realized investigations of the SPM on PALS experiment by means of the femtosecond polaro-interferometry are greatly innovative if we take into account that: (i) as far as we know the space-time SPM distributions during the laser pulse interaction with the target have been measured with the high resolution for the first time, and (ii) such detailed information about SPM distributions offer major cognitive possibilities, especially in the SI concept.

The hitherto studies on SI performed by the authors [3, 4, 6, 11] show that investigations of the expansion regimes play a central role in the knowledge of absorption processes and ablation mechanisms responsible for the ablation pressure formation, with the participation of fast electron. In addition, they showed that the character of the plasma expansion depends not only on the target material but also on the irradiation conditions of the target, namely: the focal spot radius and the wavelength of the laser beam. It is expected that wider range of a diagnostic possibilities for the measuring the SPM distributions can be particularly useful for further studies of the SI scenario.

Acknowledgments: This paper was supported in part by the Access to Research Infrastructure activity in the 7th Framework Program of the EU Contract No.284464, Laserlab Europe III, by the Czech Republic's Ministry of Education, Youth and Sports under PALS RI-LM 2010014 and by the ToIFE Project of the EUROfusion Consortium and by the French-Polish bilateral collaboration program POLONIUM and of the COST Action MP1208 "Developing the physics and the Scientific Community for Inertial Fusion by Russian Foundation for Basic Research (Projects No. 14-02-00010 and No. 13-02-00295).

References:

1. R. Betti et al, *Phys. Rev. Lett.* **98**, 155001 (2007).
2. P. Koester et al, *Plasma Physics and Controlled Fusion* **55**, 124045(2013).
3. S.Yu. Gus'kov et al, *Laser and Particle Beams* **32**, 177-915 (2014).
4. T. Pisarczyk et al, *Phys. Plasmas* **21**, 012708.(2014).
5. D. Batani et al, *Phys. Plasmas* **21**, 032710 (2014).
6. T. Pisarczyk et al, *Laser and Particle Beams* **33**, 221-236 (2015).
7. M. Kalal, *Czechoslovak J. Phys.* **41**, 743 (1991).
8. N.G. Basov, J. Wołowski, E.G. Gamali, S. Denus, T. Pisarczyk, A.A. Rupasov, G.S. Sarkisov, G.B. Sklizkov, V.T. Tikhonchuk, A.S. Shikanov. *Detection of spontaneous magnetic field in a laser plasma in the "Delfin-1" device.* JETP Lett. **45** (4), (1987).
9. T. Pisarczyk et al, *Journal of Soviet Laser Research* **11** (1) (1990).
10. T. Pisarczyk et al, *Laser and Particle Beams* **12** (3), 549-561 (1994).
11. A.Kasperczuk et al, *Laser and Particle Beams* **27**, 415-427 (2009).
12. Braginsky, S.I. (1965). Transport processes in a plasma, in *Reviews of Plasma Physics*, Vol. 1, ed. M.A. Leontovich (Consultants Bureau, New York)