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Hydrodynamic instabilities, and in particular ablation flow instabilities, are a key and with-

standing issue for laser-driven inertial confinement fusion (ICF). In an ongoing effort to obtain

a better description of the early-irradiation flow instabilities of an ICF pellet implosion (IPI),

a dedicated approach using, as mean flows, self-similar ablative heat-wave solutions of the gas

dynamics equations with nonlinear heat conduction [1] in slab symmetry, has been developed

and applied to direct laser irradiation configurations [2, 3]. This approach consists in comput-

ing, with a spectrally accurate numerical method [4], semi-infinite slab mean flows and their

time-dependent linear perturbations. Key features of real ablation flows such as unsteadiness,

confinement, compressibility that may be critical to the flow stability, are thus fully and accu-

rately taken into account. Under the assumption of radiative conduction and for positive pres-

sures and radiation fluxes at the slab external boundary, such self-similar solutions can be held

as being representative of the ablation of an ICF-pellet shell driven by a gas-filled hohlraum

radiation. A logical and preliminary step prior to any hydrodynamic stability study is then to

perform a hydrodynamic analysis of such mean flows. In doing so, a framework for analyzing

more general (i.e. not necessarily self-similar) unsteady ablative mean flows is provided.

Dimensionless equations of motion

The proposed model flow considers the motion of an inviscid, heat-conducting fluid with a

polytropic equation of state, p = RρT , E = RT/(γ − 1), and a nonlinear heat conductivity of

the form κ = κ0(ρ0/ρ)µ(T/T0)
ν , κ0 > 0, µ ≥ 0, ν > 0, where ρ0 and T0 are homogenization

constants. The fluid which is initially at rest, of uniform finite density ρI , and occupying the

half-space x ≥ 0, is set into motion by time-increasing pressure and heat flux applied at its

external boundary surface Γ . Relying on the physical governing parameters γ , R, κ0, ρI , char-

acteristic boundary pressure pΓ and heat flux ϕΓ , supplemented by a reference time tc, two

dimensionless formulations of the equations of motion in Lagrangian coordinates are proposed:

(Bp,Bϕ)-formulation [2]
∂t̄ [1/ρ̄]−∂m̄v̄x = 0 , ∂t̄ v̄x +∂m̄ p̄ = 0 ,

∂t̄

[
1
2 v̄2

x +
1

γ−1 T̄
]
+∂m̄[p̄v̄x + ϕ̄x] = 0 ,

ϕ̄x =−ρ̄ κ̄∂m̄T̄ ,

(M ,Pe)-formulation
∂t̄ [1/ρ̄]−∂m̄v̄x = 0 , ∂t̄ v̄x +

1
γ M 2 ∂m̄ p̄ = 0 ,

∂t̄

[
1
2 v̄2

x +
1

γ M 2
1

γ−1 T̄
]
+ 1

γ M 2 ∂m̄[p̄v̄x + ϕ̄x] = 0 ,

ϕ̄x =− γ

γ−1
1

Pe ρ̄ κ̄∂m̄T̄ ,
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with p̄ = ρ̄T̄ and κ̄ = ρ̄−µ T̄ ν , and where m̄ is such that dm̄ = ρ̄dx̄. Driving dimensionless pa-

rameters, apart from γ , are ascribed with the former formulation to the sole boundary condition

parameters Bp and Bϕ (cf. Tab. 1), while they are, with the latter, enchased in the governing

equations under the form of Mach and Péclet number scales M and Pe. For initial and bound-

ρ̄(m̄,0) v̄x(m̄,0) T̄ (m̄,0) p̄(0, t̄) ϕ̄x(0, t̄)

(Bp,Bϕ) 1 0 0 Bp t̄2(α−1) Bϕ t̄3(α−1)

(M ,Pe) 1 0 0 t̄2(α−1) t̄3(α−1)

Table 1: Invariant-density self-similar solutions. Initial and boundary conditions.

ary conditions compatible with a reduction of variables (Tab. 1), these formulations lead to two

complete classifications of self-similar solutions (cf. Tab. 2).

Bp Bϕ M 2 Pe

(γ−1)γ−2 PeM−2 (γ−1)3/2γ−5/2 Pe3/2M−2 γ−1 B2
ϕB−3

p γ(γ−1)−1 B2
ϕB−2

p

Table 2: Relations between the driving parameters (Bp,Bϕ) and (M ,Pe).

Invariant-density self-similar radiative ablation flows

Self-similar solutions leaving invariant the flow density correspond to the similarity expo-

nent definition α = (2ν − 1)/2(ν − 1) and the similarity laws of Tab. 3, the systems of PDEs

being replaced by systems of ODEs for the flow reduced variables, with initial and boundary

conditions of Tab. 1 being transformed, respectivley, into boundary conditions at ξ = +∞ and

at ξ = 0 [2]. For sufficiently low values of the external boundary heat flux, the heated fluid

m̄ ρ̄(m̄, t̄) v̄x(m̄, t̄) T̄ (m̄, t̄) p̄(m̄, t̄) x̄(m̄, t̄)

t̄αξ G(ξ ) t̄α−1V (ξ ) t̄2(α−1)Θ(ξ ) t̄2(α−1)P(ξ ) t̄αX(ξ ) = t̄α [V (ξ )/α +ξ/G(ξ )]

Table 3: Invariant-density self-similar solutions. Dependent/independent-variable reduction.

region may be considered to be bounded by a non-isothermal shock-wave discontinuity [1, § C]

and the boundary conditions at ξ = +∞ replaced by the relevant Rankine–Hugoniot jump re-

lations at the shock-front location (e.g. [2]). Self-similar radiative ablation flows within this

bounding shock-wave approximation have been investigated — for a monatomic gas (γ = 5/3)

and the fully ionized gas model of Kramers (µ = 2, ν = 13/2) — by means of an extensive

exploration of the space of parameters (Bp,Bϕ) for solutions computable with the numerical

method detailed in [4]. A set of 631 ablative solutions, presenting a large variety of spatial pro-
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files (Figs. 1a, c, e, g) and including a solution extrapolated from an IPI simulation with an ICF

hydrodynamics code (IPI-like flow), has thus been obtained.
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Figure 1: Reduced flow variables (a, c, e, g) and hydrodynamic characteristic numbers (b, d, f,

h) vs the reduced coordinate X (Tab. 3), for a particular flow sample (IPI-like flow in red).

Hydrodynamic analysis

The analysis of these ablative flows has been performed in the reference frame of the abla-

tion front (af) — here ascribed to be the locus of the minimum temperature-gradient length,

`T = minx `∇T — leading to the definition of local Mach, Péclet, stratification and Froude

numbers in terms of the fluid velocity relative to the ablation front v′x, the ablation-front ac-

celeration aeaf, and proper local gradient lengths (Tab. 4). Completed by the flow-region rela-

Mach Péclet stratification Froude

flow analysis M =
|v′x|√
γ p/ρ

Pe = |v′x|`∇T
κ/ρR Sr = `∇p|aeaf|

p/ρ
Fr = |v′x|√

|aeaf|`∇v′

LM criteria γM2� 1 γ2

γ−1
M2

Pe � 1 Sr′ = `
∇v′ |aeaf|
p/ρ

γM2

Fr2 (= Sr′)� 1

Table 4: Hydrodynamic characteristic number definitions and LM approximation criteria.

tive lengths `cond/`tot (conduction region), `T/`tot (ablation-front stiffness), and (1− `cond/`tot)
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(compressed-fluid region), this analysis yields a global and detailed description of the flow

hydrodynamic features. For example, strong compressibility effects — fast expansions of the

heated fluid (`cond/`tot ≈ 1, Figs. 2a, b), isentropic Chapman–Jouguet (CJ) points (M = 1,

Figs. 1b and 2c, d), ablation fronts with high stiffnesses and strong dominance of pressure

gradients over inertial forces (Sraf � 1, Fig. 1f ) — are evidenced for sufficiently large val-

ues of the Péclet scale Pe (∝ B2
ϕ/B

2
p), and in particular for the IPI-like flow. Regarding the
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Figure 2: Radiative self-similar flow. Hydrodynamic characteristic numbers (IPI-like flow �).

low-Mach-number (LM) approximation commonly used in ablative Rayleigh–Taylor instability

modeling, none of the flows satisfies the Froude criterion γM2/Fr2 (= Sr′)� 1 (see Tab. 4) in

the vicinity of the external surface and of the ablation front (Fig. 1h), while flows with CJ points

obviously do not fulfill the low-Mach criterion over part of their conduction region (Fig. 1b).

For arbitrary time-dependent flows, the same set of characteristic numbers is equally relevant,

the corresponding analysis having to be performed repeatedly over time.
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