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Introduction: Turbulence is one of the fundamental unsolved problems in classical physics, ubiqui-

tous in both laboratory and astrophysical plasmas [1]. In many cases of interest (e.g., the solar corona, the

interstellar medium or the core of modern-day tokamaks) the collisional frequency is so small compared

to the dynamic frequencies of interest that a fluid approach is not justified and a kinetic description is

thus required. Due to the huge computational costs involved in performing fully kinetic (6D) simulations

of turbulent plasmas, there is great advantage in utilizing reduced models that can still accurately capture

the main relevant aspects of the problem. In addition, our physical understanding may also be greatly

enhanced by them. One such fluid-kinetic model is KREHM (Kinetic Reduced Electron Heating Model),

a rigorous asymptotic reduction of gyrokinetics in the limit of electron plasma beta βe ∼ me/mi [2]. The

model has been numerically implemented in the Viriato code [3, 4], used in this work, in which we

simulate decaying kinetic Alfvénic turbulence in 3D, starting from an Orszag-Tang (OT) initial condi-

tion [5].

Model and code benchmarks: In KREHM the perturbed electron distribution function is defined as

δ fe = ge +(δne/n0e + 2v‖u‖e/v2
the)F0e, where F0e is the equilibrium Maxwellian, vthe =

√
2T0e/me the

electron thermal speed, v‖ the velocity coordinate (parallel to the magnetic guide field, B0), δne is the

electron density perturbation (the zeroth moment of δ fe), u‖e = (e/cme)d2
e ∇2
⊥A‖ is the parallel electron

flow (the first moment of δ fe), A‖ is the parallel component of the vector potential, and de = c/ωpe is

the electron skin depth, with ωpe =
√

4πne2/me the electron plasma frequency. The KREHM equations

are [2]:
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[ϕ, . . .], b̂bb ·∇ = ∂
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]
and [. . . , . . .] denotes the Poisson bracket. C[ge] is the

collision operator and η the Ohmic resistivity. The electrostatic potential, ϕ , is given by the gyrokinetic

Poisson law δne
n0e

= Z
τ

(
Γ̂0−1

) eϕ

T0e
, with τ = T0i/T0e and Γ̂0 denoting the inverse Fourier transform of

Γ0(α) = I0(α)e−α ; I0 is the modified Bessel function and α = k2
⊥ρ2

i /2, with ρi the ion Larmor radius.

Equation (3) is a kinetic equation for the reduced electron distribution function ge(x,y,z,v‖,v⊥, t), with no

explicit dependence on v⊥. If such a dependence is not introduced by the collision operator C[ge] [2], then

v⊥ can be integrated out and ge effectively becomes only 4D, ge(x,y,z,v‖). In Viriato ge is expanded

in Hermite polynomials, which transforms the electron drift-kinetic eq. (3), into a coupled set of M
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fluid-like equations for each of the coefficients (gm) of the Hermite polynomials of order m [2].

In Fig. 1 we show two of the many benchmarks performed with Viriato [4]. The left plot is a direct

comparison with the gyrokinetic code AstroGK [6], where the linear growth rate of the tearing mode

is computed for several values of the Lundquist number, S = avA/η , where a is a typical equilibium

length scale and vA = B0/
√

4πn0mi the Alfvén speed based on the guide-field. The parallel Alfvén time

is defined as τA = L‖/vA, where L‖ is the reference length-scale, parallel to the guide field. We note

that for βe ∼ 30me/mi the agreement is already quite good, suggesting that KREHM may well be a

valid description of plasma dynamics outside its strict asymptotic limit of validity. The right plot shows

a calculation of the frequency and damping rate of the kinetic Alfvén wave (KAW), whose dispersion

relation can be obtained by linearizing eqs. (1–3), showing an excellent agreement between the analytical

prediction and the numerical results obtained with Viriato.
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Figure 1: Left: Tearing mode growth rate as a function of the Lundquist number; results obtained both with the

gyrokinetic code AstroGK [6], for varying values of βe, and Viriato. Right: Frequency and damping rate of the

linear kinetic Alfvén wave (KAW), in units of τA, at fixed k⊥ρi = 1, M = 20, as a function of de. Lines are the

exact solution of the analytical dispersion relation, data points were obtained with Viriato.

Main results and discussion: In this work, the KREHM equations are solved in a 3D periodic cubic

box of size 2π in each direction and 2563 points. In these simulations there are two available channels

for energy dissipation: one via hyperdiffusion in coordinate space (k−space in Viriato) and the other

(if non-isothermal electrons, and thus ge 6= 0 are considered) via hypercollisions in the m−space of the

Hermite polynomials. Thus, and similar to the energy cascade occurring from small k (where energy is

injected) to large k (where dissipation takes over), in the familiar Richardson picture, there is now also

transfer of energy occurring from small to large m, i.e., phase-mixing in velocity space.

In Fig. 2 we show two energy spectra for the case of decaying 3D OT kinetic turbulence, with param-

eters ρi = 2, de = 0.3 (in code units) and non-isothermal electrons, with M = 40 Hermite polynomials,

at two different times. The slopes indicated refer to power laws that have been widely discussed in the

literature. In particular, we see that there is a sharp separation between electric and magnetic energy

scalings, occurring at around (k⊥/2π)ρi ∼ 1, in agreement with solar wind observations [7]. Also shown

is a −2.8 slope often reported in observations of the solar wind (e.g., [8]).

In Fig. 3 we show the result of the competition between the two energy dissipation channels, for
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Figure 2: Spectra for decaying turbulence with ρi = 2, de = 0.3 and M = 40 at t/τA = 1.5 (left) and 3.0 (right).

Blue line represents perpendicular electric energy; red line kinetic energy, green the perpendicular magnetic field

energy. See text for discussion of the power laws.
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Figure 3: Left: Total energy, normalized to its initial value, W0, for a 2563 system, with ρi = 2, de = 0.3. Note the

dramatic decrease in energy decay rate when the m′s are switched off (M = 0). Right: Energy dissipation channels

for the M = 40 (full lines) and M = 100 (dotted lines) runs. The predominance of the hyper-collisions (in m space)

in both cases is clearly displayed.

the same parameters of Fig. 2. The left plot shows the values of total energy, normalized to its initial

value, for a case with isothermal electrons (M = 0, i.e., ge = 0) and for a successively higher number

of Hermite polynomials. The different durations of the runs are due to the fact that they become much

more computationally expensive as M increases. The right plot shows the total values for each of the

two dissipation channels: hyperdiffusion in k−space and hypercollisions, corresponding to the energy

cascade in velocity space (linear phase-mixing). This is shown for two runs only (M = 40,100) but the

M = 10,20 runs also display the same behaviour. Note also that the run with M = 100 (dotted lines) takes

longer to reach the same value of energy dissipation via hyper-collisions, in accordance with its slower

energy decay rate, shown in the left plot.

Finally, for completeness, we show in Fig. 4 (left) energy spectra in m−space for this set of runs,

at t = 0.73τA. This plot clearly illustrates how the inertial range develops as the number of Hermite

polynomials increases and the system subsequentely takes longer to reach the dissipation range. Also

shown is a −1/2 power law, deduced in [2] for the inertial range slope of linear phase-mixing KAWs.

The right plot shows energy spectra for M = 40 at the same times as Fig. 2. The power law seems to be

obeyed, well beyond its regime of validity, even after most of the initial energy has been dissipated.
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Figure 4: Em = |g2
m|/2 energy spectra in m−space, with a−1/2 power law [2]. Left: same values of M 6= 0 shown

in Fig. 3 (left), at the same time, t = 0.73τA. Right: Spectra for the M = 40 run, at two different times, the same as

shown in Fig. 2.

Conclusions and future work: In this work we show preliminary results suggesting that linear phase-

mixing may play a dominant role in decaying kinetic turbulence energy dissipation. We note that these

results are still not conclusive and further parameter scans are in progress. In particular, the non-linearity

of the system only becomes effective at about t ∼ τA (see Fig. 3, left, M = 0 run). This means that for non-

isothermal electrons (ge 6= 0, i.e., M 6= 0) linear phase-mixing begins dissipating energy well before the

other channel (in k-space) can do so. However, there is a strong indication (from the results presented here

as well as from other, smaller runs) that this may indeed be the dominant energy dissipation mechanism

in these systems, a topic which will be the main subject of a forthcoming publication.

Other questions of interest include ascertaining the exact role played by current sheets in energy dis-

sipation [9, 10]. In order to quantify this we intend to perform numerical simulations where turbulent

mixing (due to nonlinearity) and linear phase-mixing in velocity space are taking place simultaneously,

which in turn will require increasing the number of Hermite polynomials even further.
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