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A magnetized plasma is described by the Vlasov equation and the non-linear Fokker-Planck col-

lision operator [1]. The Vlasov part describes phase-space advection and the collision operator

adds dissipation due to collisional energy and momentum exchange. Numerical discretization

of the collision operator, however, is far from trivial. Recently, we have developed a new ap-

proach [2] to address this issue. The new approach is based on an expansion in Gaussian Radial

Basis Functions (RBFs), a method widely used in neural network calculations [3]. In this paper,

we discusss useful details regarding the numerical implementation of the RBF method.

Introduction In Ref. [2], we adressed the kinetic equation and the collision operator by ex-

pressing the distribution function as a sum of shifted Maxwellians, i.e., as Gaussian RBFs. In

the continuous summation limit, an equivalent expression for the distribution becomes

fa(v, t) =

∫ (γ
π

)3/2
exp

[
−γ (v−u)2

]
Wa(u,γ, t) du dγ,

where the weight function Wa(u,γ, t) is normalized to the density of the species a according

to
∫
Wa(u,γ, t) du dγ = na(t). The Rosenbluth potentials, which are needed to describe the

non-linear collision operator, can then be calculated analytically according to

ϕb(v, t) =− 1

4π

∫
γ1/2Φ(γ1/2|v−u|)Wb(u,γ, t) du dγ,

ψb(v, t) =− 1

8π

∫
γ−1/2Ψ(γ1/2|v−u|)Wb(u,γ, t) du dγ,

where Φ(s) = erf(s)/s, Ψ(s) = [s+1/(2s)]erf(s)+exp(−s2)/
√
π, and erf(s) is the error func-

tion.

For numerical considerations, the integration is changed into a discrete sum by defining the

weight-function to be a sum of delta-functions: in 3D velocity space one chooses Wa(u,γ, t) =∑
iw

i
a(t) δ(u−vi) δ(γ−γia) and in the axisymmetric case one can choose cylindrical velocity

space coordinates and Wa(u) =
∑

iw
i
a(t)

1
2πv⊥i

δ(u‖−v‖i)δ(u⊥−v⊥i)δ(γ−γia). As was shown

in Ref. [2] the collisional part of the Fokker-Planck equation then reduces to

∑
i

∂wia
∂t

F ia =
∑
b,k,`

wkb (t)w`a(t)Lab

[
ma

mb
F kb F

`
a +µab

∂ϕkb
∂v
· ∂F

`
a

∂v
−
∂2ψkb
∂v∂v

:
∂2F `a
∂v∂v

]
, (1)
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where µab = ma/mb−1, Lab = (eaeb/maε0)
2 lnΛab, lnΛab is the Coulomb logarithm, and wia

are the expansion weights. The RBF basis functions becomeF ia =
(
γia/π

)3/2
exp[−γia(v−via)2],

for the 3D weight-function, and F ia = (γia/π)3/2I0(2γ
i
avi,⊥v⊥)e−γ

i
a(v‖−vi,‖)2−γia(v2⊥+v2i,⊥), corre-

sponding to the 2D axisymmetric weight function. I0(x) is the zeroth modified Bessel function

of the second kind. The only notable difference between the 3D and 2D axisymmetric case is

that in 3D, the weight function completely eliminates the u-integral in the potential functions,

while in 2D the potentials ϕib and ψib have to be computed numerically as ring-like averages of

the functions Φ and Ψ.

In this paper, we provide a detailed discussion of some of the key aspects needed for an

efficient implementation of Eq. (1). We will focus on the evaluation of the right-hand-side and

also on the specific case of axisymmtry.

Equation for the weights Even after the expansion, the Fokker-Planck equation, Eq. (1), has a

velocity space dependence. In order to obtain an equation for the weights only, this dependence

has to be eliminated.

Multiplying Eq. (1) with a test function Θi and integrating over velocity space gives∑
j

M ij
a
∂wja
∂t

=
∑
b,k,`

wkb (t)w`a(t)C
ik`
ab , (2)

where the so-called mass matrix M ij
a =

∫
dvΘiF ja and the tensor like collision term Cik`ab is

Cik`ab =

∫
dvΘiLab

[
ma

mb
F kb F

`
a +µab

∂ϕkb
∂v
· ∂F

`
a

∂v
−
∂2ψkb
∂v∂v

:
∂2F `a
∂v∂v

]
≡
∫
dvΘiCk`ab .

The traditional Galerkin projection is obtained by choosing Θi = F ia, and the center collocation

method by choosing Θi = δ(v−vi). In the center collocation, the matrix is thus simply M ij
a =

F ja (vi) and the collision tensor becomes Cik`ab = Ck`ab (vi).

The true challenge in solving Eq. (2) is that the right hand side contains a rank-3 tensor, which

is not sparse: introducing the Gaussian RBF-basis is advantageous in the sense that the expres-

sion for the collision operator in 3D velocity space becomes analytic but, simultaneously, each

basis function extends to infinity, making both the matrix and the tensor full. The specific struc-

ture of the collision tensor, however, can be used to reduce the memory demands significantly,

especially if the center collocation method is used.

Consider the evaluation of the collision operator at a set of points {vi}Ni=1. Since Ck`ab (v) can

be expressed as a sum of products of two different functions we can compute the value of the

collision operator at the points vi according to

CCC=Lab

[
ma

mb
([FFF b]wwwb)

T ([FFF a]wwwa)+µab ([∂∂∂ϕϕϕσb ]wwwb)
T ([∂∂∂FFF σa ]wwwa)−([∂∂∂∂∂∂ψψψσνb ]wwwb)

T ([∂∂∂∂∂∂FFF σνa ]wwwa)

]
,
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where summation over repeated indices σ and ν is assumed, wwwa is a vector containing the

weights, FFF a is a matrix with components (FFF a)ij = F ja (vi), the derivative matrices in Cartesian

3D velocity space have the components

[∂∂∂ϕϕϕσb ]ij =
∂ϕjb(vi)
∂vσ

, [∂∂∂∂∂∂ψψψσνb ]ij =
∂2ψjb(vi)
∂vσ∂vν

,

and similarly for the distribution function. Later we give the expressions in cylindrical coor-

dinates. The upper index T denotes a matrix transpose. Thus, instead of storing a full rank-3

tensor to evaluate the right hand side in Eq. (2), it is enough to compute and store the matrices

[FFF a], [∂∂∂ϕϕϕσa ], [∂∂∂FFF σa ], [∂∂∂∂∂∂ψψψσνa ], and [∂∂∂∂∂∂FFF σνa ] for each of the plasma species of interest.

In the center collocation method, the matrix sizes are N ×N for N basis functions, and the

discretized equation for the weights can then be expressed in a matrix form as

[FFF a]
∂wwwa
∂t

= CCC(wwwa,wwwb).

In the Galerkin projection, one has to compute the integrals over the velocity space but, as it has

to be done numerically, it can be formulated into a similar form

[MMMa]
∂wwwa
∂t

=KKK(wwwa,wwwb),

where the mass matrix and the integral of the collision operator are defined by

[MMMa]ij =
∑
`

b`F
i
a(v`)F ja (v`), KKKi(wwwa,wwwb) =

∑
`

b`F
i
a(v`)C`(wwwa,wwwb),

and b` are the integration weights. Using the described method one avoids storing a full rank-3

tensor.

Velocity space axisymmetry Using cylindrical velocity space coordinates (v‖,v⊥) the rela-

tive magnitude of two vectors v and u is |v−u|=
√

(v‖−u‖)2 +v2⊥+u2⊥−2v⊥u⊥ cos(θv− θu)

from which it is easy to observe that (∂θv + ∂θu)|v− u| = 0, and then further show that the

Rosenbluth potentials become independent of the cylindrical angle θv when the 3D potentials

are integrated over the angle θu. In order to compute the axisymmetric collision operator in

cylindrical velocity-space coordinates, we thus need the expressions

∂ϕkb
∂v
· ∂F

`
a

∂v
=

∂ϕkb
∂v‖

∂F `a
∂v‖

+
∂ϕkb
∂v⊥

∂F `a
∂v⊥

,

∂2ψkb
∂v∂v

:
∂2F `a
∂v∂v

=
∂2ψkb
∂v2⊥

∂2F `a
∂v2⊥

+ 2
∂2ψkb
∂v⊥∂v‖

∂2F `a
∂v⊥∂v‖

+
1

v2⊥

ψkb
∂v⊥

∂F `a
∂v⊥

+
∂2ψkb
∂v2‖

∂2F `a
∂v2‖

.

As these expressions are also summations of products of two functions the equation for the

weights is obtained in the same manner as was described above.
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Derivatives of the distribution function are simple to calculate analytically and the derivatives

of the potential functions ψi become

∂2ψi
∂v2‖

=−
γ
1/2
i

8π

〈
Ψ′(γ

1/2
i |v−vi|)

γ
1/2
i |v−vi|

+γi(v‖−vi,‖)2
(

Ψ′′(γ
1/2
i |v−vi|)

γi|v−vi|2
−

Ψ′(γ
1/2
i |v−vi|)

γ
3/2
i |v−vi|3

)〉
θi

,

∂ψi
∂v⊥

=− 1

8π

〈
γ
1/2
i

[
v⊥−vi,⊥ cos(θ−θi)

]Ψ′(γ
1/2
i |v−vi|)

γ
1/2
i |v−vi|

〉
θi

,

∂2ψi
∂v2⊥

=−
γ
1/2
i

8π

〈
Ψ′(γ

1/2
i |v−vi|)

γ
1/2
i |v−vi|

+γi
(
v⊥−vi,⊥ cos(θ−θi)

)2[Ψ′′(γ
1/2
i |v−vi|)

γi|v−vi|2
−

Ψ′(γ
1/2
i |v−vi|)

γ
3/2
i |v−vi|3

]〉
θi

,

∂2ψi
∂v⊥∂v‖

=−
γ
1/2
i

8π

〈
γi(v‖−vi,‖)

[
v⊥−vi,⊥ cos(θ−θi)

][Ψ′′(γ
1/2
i |v−vi|)

γi|v−vi|2
−

Ψ′(γ
1/2
i |v−vi|)

γ
3/2
i |v−vi|3

]〉
θi

,

where 〈·〉θ refers to integration over the angle θ. Similarly one would calculate the derivatives for

the potential ϕi. For the results presented in Ref. [2] these integrals were evaluated numerically

using the Simpson’s rule which is a particularly good method for periodic integrands. High level

of accuracy can be obtained already with 100 integration points, as the integrands are periodic

with respect to the angle θ.

Summary We have described in detail the numerical implementation of the Gaussian radial

basis function method to discretize the Fokker-Planck collision operator in both full 3D and in

axisymmetric 2D velocity space. Especially, we focused explicitly on decomposing the rank-

3 tensor that appears in the collision operator into a form that only requires storing rank-2

matrices. This approach saves both memory and computation time. In addition, we gave explicit

formulas for evaluating the axisymmetric velocity space derivatives of the Rosenbluth potentials

that are needed for the axisymmetric implementation.
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