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The dc conductivity of fully ionized plasma in the strongly degenerate limit is investigated

using the linear response theory. An analytical expression for the temperature dependence of

the difference between conductivities of plasma with and without electron-electron scattering is

obtained. It is found that this difference is proportional to the fourth power of the degeneracy

parameter, if we neglect the ion-ion correlations. Accounting for ion-ion correlations in the ap-

proximation of the Debye-Hückel type leads to the third power of dependency above. The result

is applicable in constructing interpolation formulas for calculating the plasma conductivity in

the wide temperature and density regions on the basis of the Lorentz model.

Introduction

The temperature behaviour of the electron-electron scattering influence on plasma transport

properties is interesting both for the description of experiments and the construction of inter-

polation formulas for the conductivity [1, 2, 3]. The electron-electron scattering makes a sig-

nificant contribution to the conductivity of low-density non-degenerate plasma [4], where the

systematic treatment of it with the dynamical character of dielectric screening is possible on the

base of linear response theory [5]. For technical details and asymptotic behaviour of conductiv-

ity of low-density non-degenerate plasma see [6]. In strongly degenerate electron systems the

electron-ion scattering is dominated and the conductivity is well defined without the electron-

electron collisions account [7, 8]. Some works were aimed at the constructions of interpolation

formulas, linking the real plasma conductivity with the Lorentz one by introducing the correc-

tion factor between them. In particular, two different correction factors were introduced in [9]

and [10]. In order to create more suitable correction factor and interpolation formula for con-

ductivity, it would be useful to investigate the possibilities to determine an asymptotic behaviour

of it in both limits on degeneracy. In the present work we consider the limit of high degeneracy.

Basic approximations

Following [11], consider a neutral two-component plasma consisting of free singly charged

particles with charges ei (ions) and ee (electrons, ei = −ee = e) at temperature T and density

n = ne = ni in the adiabatic limit (the electronic mass is much less than the ionic mass), inter-
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acting via Coulomb forces. Introduce degeneracy parameter Θ = (2mekBT/h̄2)(3π2ne)
−2/3 and

the electron-ion coupling constant Γ = (e2/4πε0kBT )(4πne/3)1/3. For the strongly degenerate

plasma Θ� 1. Within the linear response theory in the formulation of Zubarev [5], the trans-

port properties are expressed via force-force correlation functions [12, 13, 14]. The resulting

expression for conductivity is

σ =− e2

Ωdet(d)

∣∣∣∣∣∣ 0 N0

N0 d

∣∣∣∣∣∣ , (1)

Nn =
(

Nn0 Nn1 . . . Nnl

)
, (2)

Nn =


Nn0

Nn1
...

Nnl

 ,d =


d00 d01 . . . d0l

d10 d11 . . . d1l
...

... . . . ...

dl0 dl1 . . . dll

 . (3)

In (1)-(3) Ω - the system volume, Nmn,dmn are correlation functions for the thermodynamic

equilibrium, Ne - the number of electrons and β = (kBT )−1 . The dimension of the matrix d

coincides with the number of moments in the corresponding relevant statistical operator (see

[5]). In the adiabatic limit we can omit the ion flux [15] and obtain for Eq.(3)

dmn = dei
mn +dee

mn, (4)

Nmn = Ne
Γ(m+n+5/2)

Γ(5/2)
Im+n+1/2(β µ id

e )

I1/2(β µ id
e )

, (5)

with Iν(y) - the Fermi integrals, µ id
e - the ideal part of the electronic chemical potential.

The correlation functions dmn are evaluated using thermodynamic Green’s functions. As in

[11], we restrict ourselves to l = 1 in (2), (3).

In the adiabatic limit

dei
mn =

4m2
e

3π2β 2h̄3

∞∫
0

dxxn+m+2 f e
k (1− f e

k )Qei(x), (6)

Qei(x) =
β 2Ω2

16πx2

2k∫
0

∣∣∣∣ V (q)
εe(q,0)

∣∣∣∣2 Sii(q)q3dq, (7)

εe(q,0) = 1+ΩV (q)(1−Ge(q))χ
(0)
e (q,0), (8)

with x = β h̄2k2

2me
, Qei(x) - the transport cross-section for electron-ion scattering, εe(q,0) - the

effective static electronic dielectric function, Sii(q) - the ion-ion structure factor, χ
(0)
e (q,ω) the

free-electron polarizability, Ge(q) - the static electronic local field correction.
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The correlation function dei
mn for the electron-electron scattering in the strongly degenerate

limit was evaluated in [11]:

dee
11 = 17.3Θ

7/2kFd
2kF∫
0

dq
q2ε2

e (q,0)
, (9)

where d = 8
3

m1/2
e e4N2

e β 3/2

Ω(4πε0)2 .

Representing dei
m,n−m =

∞∫
0

f (E)d((βE)nUei(E)), we obtain

dei
00 =Uei(EF)+

π2

6
T 2U

′′
ei(EF)+

7π4

360
T 4U IV

ei (EF)+ ..., (10)

dei
01 = Θ

−1(dei
00 +δ1Θ

2 +δ2Θ
4 + ...), (11)

dei
11 = Θ

−2(dei
00 + ε1Θ

2 + ε2Θ
4 + ...), (12)

N00 = Ne,N01 = NeΘ
−1(1+α1Θ

2 +α2Θ
4 + ...), (13)

where EF is the Fermi energy.

For dee
11 we suggest εei = dee

11/dei
11 = o(Θ2). As the analysis shows, εei ∼ Θ4 for Sii = 1,

εei ∼ Θ3 for the Debye-Hückel model, and has a tendency to Θ3lnΘ for HNC procedure.

Results and discussion

Substituting all the expansions into (1), we obtain:

σ = σLorentz

1− εei

(
EFU

′
ei(EF)

Uei(EF)
− 3

2

)2
 . (14)

Compare the result obtained with the approximations:

σS = σLorentz (1−0.0125Θ) , (15)

σF = σLorentz
(
1−0.209Θ

2) (16)

of [9] and [10], correspondingly.

For εe(q,0) = 1+ κ2

q2 (Thomas-Fermi approximation for the electronic dielectric function,

κ2 = 4kF
πa0

, kF - Fermi wave number, a0 - Bohr radius)

dee
11 = 8.65Θ

7/2d
(√

ks arctan
√

ks−
ks

1+ ks

)
, (17)

where ks =
4k2

F
κ2 = πkFa0 =

6.029
rs

, (a0rs)
3 = 3

4πne
.

If Sii(q) = 1,

dei
00 =

3
√

π

8
Θ

3/2d
(

ln(1+ ks)−
ks

1+ ks

)
, (18)
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and εei ∼Θ4.

More realistic structure factor is obtained from linearization of HNC procedure, or equivalent

contour integral treatment of electron-ion collisions dynamical screening in adiabatic approxi-

mation [16]. For the Thomas-Fermi dielectric function (Debye-Hückel model)

Sii(q) =
q2 +κ2

q2 +κ2
(
1+ 2

3Θ

) . (19)

This structure factor approximates well the results of HNC procedure for q up to 2kF and

Γ∼ 1, and it can be used for estimates up to rs ∼ 2Θ.

In this approximation we obtain

εei = 17.35Θ
3

√
ks arctan

√
ks− ks

1+ks

ks− ln(1+ ks)
,
EFU

′
ei(EF)

Uei(EF)
=

k2
s

(1+ ks)(ks− ln(1+ ks))
. (20)

Further analysis can be carried out using the numerical procedures for determining the struc-

ture factor. HNC procedure shows the tendency to Θ3lnΘ for εei behaviour. The value U
′
ei(EF)

is very sensitive to the details of Sii(q) and needs further research.

Unlike (15) and (16), correction factors to Lorentz plasma conductivity show other behaviour

on Θ and are dependent on electronic density. These results should be considered in further

constructions of interpolation formulas for the conductivity
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