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of the strongly degenerate plasma electrical conductivity
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The dc conductivity of fully ionized plasma in the strongly degenerate limit is investigated
using the linear response theory. An analytical expression for the temperature dependence of
the difference between conductivities of plasma with and without electron-electron scattering is
obtained. It is found that this difference is proportional to the fourth power of the degeneracy
parameter, if we neglect the ion-ion correlations. Accounting for ion-ion correlations in the ap-
proximation of the Debye-Hiickel type leads to the third power of dependency above. The result
is applicable in constructing interpolation formulas for calculating the plasma conductivity in

the wide temperature and density regions on the basis of the Lorentz model.

Introduction

The temperature behaviour of the electron-electron scattering influence on plasma transport
properties is interesting both for the description of experiments and the construction of inter-
polation formulas for the conductivity [1, 2, 3]. The electron-electron scattering makes a sig-
nificant contribution to the conductivity of low-density non-degenerate plasma [4], where the
systematic treatment of it with the dynamical character of dielectric screening is possible on the
base of linear response theory [5]. For technical details and asymptotic behaviour of conductiv-
ity of low-density non-degenerate plasma see [6]. In strongly degenerate electron systems the
electron-ion scattering is dominated and the conductivity is well defined without the electron-
electron collisions account [7, 8]. Some works were aimed at the constructions of interpolation
formulas, linking the real plasma conductivity with the Lorentz one by introducing the correc-
tion factor between them. In particular, two different correction factors were introduced in [9]
and [10]. In order to create more suitable correction factor and interpolation formula for con-
ductivity, it would be useful to investigate the possibilities to determine an asymptotic behaviour

of it in both limits on degeneracy. In the present work we consider the limit of high degeneracy.

Basic approximations
Following [11], consider a neutral two-component plasma consisting of free singly charged
particles with charges e; (ions) and e, (electrons, e; = —e, = e) at temperature 7 and density

n = ne = n; in the adiabatic limit (the electronic mass is much less than the ionic mass), inter-
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acting via Coulomb forces. Introduce degeneracy parameter ® = (2mckpT /1*)(37%ne) =%/ and
the electron-ion coupling constant I' = (¢? /4megkgT) (47tne/3)'/3. For the strongly degenerate
plasma ® < 1. Within the linear response theory in the formulation of Zubarev [5], the trans-
port properties are expressed via force-force correlation functions [12, 13, 14]. The resulting

expression for conductivity is

e? 0 N
c=— . , (1)
Qdet(d) No d
Ny = ( Nuo Np1o ... an > ’ (2)
Nno doo dor ... doy
_ N, d d .o d
No=| " a=] T T 3)
Ny do dn ... dy

In (1)-(3) Q - the system volume, N,,,,d,,, are correlation functions for the thermodynamic
equilibrium, N, - the number of electrons and 8 = (kgT)~! . The dimension of the matrix d
coincides with the number of moments in the corresponding relevant statistical operator (see

[5]). In the adiabatic limit we can omit the ion flux [15] and obtain for Eq.(3)

dmn == dm d;fn 5 (4)

T(m+n+5/2) bnini1/2(Bu)
['(5/2) Lip(Burid)

with I, (y) - the Fermi integrals, p/?- the ideal part of the electronic chemical potential.

Nmn - Ne (5)

The correlation functions d,,, are evaluated using thermodynamic Green’s functions. As in
[11], we restrict ourselves to / = 1 in (2), (3).

In the adiabatic limit

Ao =5 B2 s / A 2 (1= £)0u(x), (©)
2%
B’ / V@ [
i(x) = i dq, 7
0
(4.0) = 1+QV (g)(1 - Ge(9) %" (4.0). ®)
with x = [Zh—jf, Q.i(x) - the transport cross-section for electron-ion scattering, €.(g,0) - the

effective static electronic dielectric function, S;;(¢) - the ion-ion structure factor, xéo) (¢, w) the

free-electron polarizability, G.(g) - the static electronic local field correction.
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The correlation function d¢, for the electron-electron scattering in the strongly degenerate

limit was evaluated in [11]:

2kp
~17.30"/% d/— 9
11 F 282 0) ( )
1/2
where d = %Q(:TN;I;W
Representing d¢; ,_,, = [ f(E)d((BE)"Uei(E)), we obtain
0

i 2 Ity
doo:Uez(EF)+ G T U, (EF)+%T U, (EF)+ ..., (10)
dsi =071 (dg + 6,0 + 5,0% +...), (11)
=@ (d§)+€0°+ 50+ ..), (12)
Noo = N, Noi :Ne®71(1+061®2+062®4—|—...), (13)

where EF is the Fermi energy.
For df{ we suggest &,; = dﬁ/df’l — 0(@®?). As the analysis shows, &; ~ ©* for S;; = 1,
&.; ~ O for the Debye-Hiickel model, and has a tendency to ®3/n® for HNC procedure.

Results and discussion

Substituting all the expansions into (1), we obtain:

, 2

ErU .(E 3

O = OLorentz 1— Eei (Zz—lé}:;) - E) . (14)
ei

Compare the result obtained with the approximations:
05 = OLorentz (1 —0.01250), (15)

OF = OLorentz (1—0.20907%) (16)

of [9] and [10], correspondingly

For &(q,0) =1 + (Thomas-Ferm1 approximation for the electronic dielectric function,

K2 = fr’;f) kg - Fermi wave number, a - Bohr radius)
k
¢ —8.650"/2d ( P ) : (17)
A}
where k = wkra 6'(,)39, (Clof”s)3 = 4,?,16
If Si(g) = 1

.3 k
s = —‘f@md (ln(1+ks)— 1+Sk ) (18)
)
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and g,; ~ O,
More realistic structure factor is obtained from linearization of HNC procedure, or equivalent

contour integral treatment of electron-ion collisions dynamical screening in adiabatic approxi-

mation [16]. For the Thomas-Fermi dielectric function (Debye-Hiickel model)

B P+ >

@R (I45g)

Sii(q) (19)

This structure factor approximates well the results of HNC procedure for g up to 2kr and
I' ~ 1, and it can be used for estimates up to r; ~ 20.

In this approximation we obtain

kg /
e — 173507 Y Reretan vk~ g ErUn(Er) _ K (20)
“ ‘ ks —In(1+ks)  Uh(Ep) — (14ke)(ks—In(1+ky))

Further analysis can be carried out using the numerical procedures for determining the struc-
ture factor. HNC procedure shows the tendency to ®3/n® for &,; behaviour. The value U ;i (EF)
is very sensitive to the details of S;;(¢) and needs further research.

Unlike (15) and (16), correction factors to Lorentz plasma conductivity show other behaviour
on ® and are dependent on electronic density. These results should be considered in further

constructions of interpolation formulas for the conductivity
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