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Introduction

In fusion plasmas heat transport is deleterious, therefore transport barrier (TB) generation

is a key performance indicator. The spontaneous generation of a transport barrier is due to the

interplay between turbulence and zonal flows (ZF). Turbulent eddies can transfer energy via non

linear coupling to ZF that tend to store it for long time scale. On the other hand the efficiency of

the energy transfer between turbulence and zonal flows can vary and different transport regimes

have been observed. Two opposite regimes have been identified: (1) fully turbulent, where one

can retrieve an homogeneous turbulence distribution and ZF are weak, (2) zonation, where the

ZF dominate and the turbulence is damped. In many dynamical systems one can observe these

various regimes, from oceans to planetary atmosphere [1].

We present here an analytical work on the interaction between turbulence and ZF reducing our

model to a limited number of modes. The results are then compared with those obtained via a

2D fluid code. The role of non linear coupling in the ZF generation and saturation is defined

and appears crucial in the transition from turbulent to zonation regime.

Zonal flow source and sink: study of three modes coupling

Departing from the charge conservation equation, in an isothermal plasma, in the cold ions

limit and in the case of absence of interchange forcing, the vorticity equation is derived as

following

∂tW + [φ ,W ] = ν⊥∆⊥W + J (1)

where W is the vorticity W = ∆⊥Φ, x and y, the space coordinates corresponds to the poloidal

angle and radial direction, J is the parallel current loss. The convective turbulent transport

[Φ,W ] = ∂x(W (−∂yΦ))+ ∂y(W (∂xΦ)) competes with the small scale diffusive transport with

coefficient ν . The loss term is defined as < J >y= 0. Averaging along the flux surfaces, there

is no current loss in parallel direction and the zonal flows Vz = ∂x < Φ >y evolution can be

rewritten as

∂tVz +∂xRS−ν∆xVz = 0 (2)
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where RS(x) =< ∂xΦ̃∂yΦ̃ >y is the Reynold stress term and Φ̃ = Φ− < Φ >y is the potential

fluctuations. The collisions term, in this case simplified through the viscosity term, acts as sink

for ZF [3]. Conversely the RS term can act as source or sink of the zonal flows, according to the

predator-prey scheme[2]. Namely, two possible scenarios have been identified: (a) Turbulence

gives energy to ZF, i.e. the ZF are excited and turbulence is damped. ZF govern the large scale

transport (in this case RS acting as source).(b) Once ZF source is drained, ZF start decaying

and turbulence can grow until a turbulent burst can go through the barrier (in this case RS is a

ZF sink). Once the turbulent transport becomes dominant, the cycle restarts. The RS term in the

two different regimes has been studied in order to understand the mechanism that let the system

cycle between both regimes (a) and (b). The interplay between zonal and turbulent modes can be

addressed in the framework of non linear three mode coupling: the zonal flow, the streamer and

the more homogeneous turbulent mode, respectively Φz(κ,0),Φs(0,ks),Φt(κ,ks). Two cases of

study are proposed in this letter, comparable to the regimes previously mentioned:

(a) The condensation of the ZF, in the case the streamer Φs represents the equilibrium profile

and Φz,Φt are the small amplitude perturbations, if the growthrate is positive the turbu-

lence is giving energy to ZF.

(b) The Kelvin Helmoltz (KH) instability, where the ZF modes is the equilibrium profile and

Φz,Φt are the perturbations, positive growthrate means that the ZF is giving energy to

turbulence.

The Kelvin Helmoltz instability is the primary focus. We can study such instability in a more

general way defining the perturbations as φl(kxl,ky),φl+1(kxl+1,ky), where kxl+1 = lκ with l =

[0, inf], the dispersion relation can be rewritten as

[γ +
γl + γl+1

2
]2 =−VlV ′l k2

yκ
2|Φz|2− γlγl+1 +

γl + γl+1

2

2
(3)

where γi = νk2
i +σ/k2

i , k2
i = k2

xi+k2
y with i = l, l+1 and coupling terms are Vl =

(
k2

l −κ2)/k2
l+1,

V ′l =
(
k2

l+1−κ2)/k2
l . The instability condition is then −VlV ′l k2

yκ2|Φz|2− γ1γl+1 > 0. If we de-

fine Rl = −VlV ′l k2
y κ2|Φz|2

γlγl+1
, then Rl > 1 becomes a necessary condition in order to have the cou-

pled modes unstable, which lead to define three new variables Xl,Yl,Zl such that X2 =
k2

xl+k2
y

K2 ,

Yl = kxl
K and Z2

l = X2
l −Y 2

l =
k2

yl
K2 . Let be k̄ such that ν k̄2 = σ

k̄2 . In this way we rewrite Rl =

g2F(x,y, l)/G(X ,y, l) such that

F =−VlV ′l
( |Φz|κ4

klkl+1
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= (X2

l −Y 2
l )(X2
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Figure 1: (a)the linear growthrate γτ‖ in function of ky and kx in case of 2 coupled modes, (b) 3

modes, (c) 4 modes and (d) 5 modes

By definition G and g2 are positive and X2
l ≥Y 2

l , therefore Rl is positive if (X2
l −1)(X2

l +2Yl) <
0, which corresponds to two possible cases

Y 2
l +Z2

l < 1 ∩ (Yl +1)2 +Z2
l > 1 or Y 2

l +Z2
l > 1 ∩ (Yl +1)2 +Z2

l < 1 (5)

In fig.1(a) the growthrate amplitude in function of the perturbation mode is plotted . Addi-

tionally, if we take in account more than one couple of modes, the following linear system is

derived: 
Ω1 V1 0 · · · 0

−V ′1 Ω2 V2 · · · 0

0 . . . . . . . . . 0

0 0 · · · V ′n Ωn




Φl

Φ2
...

Φn

= 0

Solving the linear system, we observe that the unstable spectrum region is expanded in kx if

the number of perturbations coupled with φz increases, while the condition γ > 0 => |ky|/|κ|<

1 is always true (see fig.1(b)-(c)-(d), where γτ‖ is plotted in function of kx,ky respectively in

case of three, four and five modes contribution). Conversely, if the same procedure is repeated

but considering the streamers as equilibrium condition and Φz,Φt as perturbations (case (a)),

the opposite condition is recovered: the region of spectrum of positive growthrate is constrained

by |ky|/|κ| > 1. To verify the analytical observation, the two regimes are now modeled. For

(b) case, we assume a equilibrium profile Φz(κ = 0.024,0) and two streamers are excited with

different poloidal size, Φs1(0,κ/2),Φs2(0,7/4κ). From fig.2(a)-(b) we can observe that the per-

turbation Φs1 is growing accordingly with the prevision of the linear analysis, i.e. the growthrate

is approximately γτ‖ ≈ 2600. On the other hand the streamers with poloidal size smaller than

the ZF radial width is damped. If we consider the streamers like mode Φs(0,ks = 0.024) as

equilibrium condition and two zonal flows as perturbations Φz1(ks/2,0),Φz2(7/4ks,0), we can

observe that the zonal flow is excited only if the radial width of the zonal flow is larger than the

poloidal width of the streamer, fig.2(c)-(d).
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Figure 2: (a) evolution in time of the poloidal spectrum ky if a streamer Φs1 or (b) Φs2 is

perturbed,(c) evolution in time of the radial spectrum kx if a zonal flow Φz1 or (d) Φz2 is per-

turbed.

Conclusions

We can redefine the turbulent spectrum in two different regions called as (1)’B-modes region’

and (2) ’S-modes region’. (1)’B’ stays for big scales structure. This region of the turbulent

spectrum, where the poloidal size of the turbulent structures is bigger than the radial size of ZF,

cannot give but only receive energy from ZF through KH instability. Fundamentally this region

is not source for ZF. (2) ’S’ stays for small scale structures and define the region of the spectrum

where the turbulence size is smaller than the radial size of ZF, namely S-modes transfer energy

to the ZF and cannot act as a sink for ZF. Inserting the interchange forcing and the density

equation we can simulate the selfconsistent zonal flows and turbulence interplay. According to

the amplitude of the two regions S−B, we can recover different transport regimes[4]. If the

S-modes dominates we are in the zonation regime, while if the B-modes dominates the system

is fully turbulent.
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