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Introduction

The computation of impurity transport in magnetized plasmas has gained a renewed interest
for several reasons. Firstly an increasing number of tokamaks operate with tungsten plasma
facing components in order to prepare the operation of Iter [1, 2]. Recent results from ASDEX-
Upgrade [3] and JET [4] indicate that tungsten transport plays an essential role in the discharge
history. Accumulation in the core may lead to reduced performances, and in some cases to ra-
diative collapses. Secondly impurity seeding of edge plasmas with medium charge numbers Z
such as argon or neon is envisaged in Iter [5]. Inward penetration of these impurities should be
prevented to avoid core dilution and a subsequent decrease of the fuel concentration. Finally
fusion reactions will produce helium, which must be extracted efficiently, again to avoid core
dilution. Neoclassical impurity transport has been investigated in details in the 80’ [6, 7], and
updated recently to account for poloidal asymetries due to centrifugal forces and/or RF heating
[8, 9, 10]. Impurity fluxes are traditionally written as sums of turbulent and neoclassical contri-
butions. However synergistic effects cannot be excluded so that it is desirable to compute these
two contributions on an equal footing, at least to verify this hypothesis. The right framework for
computing neoclassical and turbulent transport at the same time appears to be a set of gyroki-
netic equations that account for collisions. This paper presents the first results of the GYSELA

code with a new collision operator that has been implemented recently for this purpose.

Model collision operator implemented in the GYSELA code
The collision operator that is implemented in the GYSELA code is of the form C, =Y, C

with _ 0 2 (- maV|Ujaa
Car(Fa) = =— |DaavFmoa=— <fa——’)
| | Ta
mgVv
- Vs.,ab;—H (UHd,a - UHba) Fy0a
a
2 1 my? 3
+ INT, (Qab +V)aR)ab +Qab) (2—Ta - 5) Fpoa ey

where f, is the gyrocenter distribution F, normalized to the Maxwellian Fjyq,, Dy qp 18 the
deflection diffusion coefficient and V; 4, is the slowing-down collision rate, Qy, is the energy
collisional transfer rate, R llab is the friction force, N, the density, m, the mass, and 7 the temper-
ature. The function U d4.a(v) and parameters U |lab and ggp are adjusted to conserve momentum
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and & = V| /v is the pitch-angle parameter and v the velocity modulus. The bracket indicate an
average over Fjyo,4, and the function 6, (v) is given by
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This multi-species collision operator satisfies several constraints: particle, momentum and en-
ergy conservation, and it relaxes towards a Maxwellian in the direction parallel to the magnetic
field.

Numerical tests of the collision operator

The operator Eq.(1) has been implemented in the GYSELA code. Its main properties have
been verified, as detailed and illustrated in the following. The gyrokinetic equation is reduced to
its collisional part only, i.e. the Lagrangian derivative along the particle trajectories is ignored.
Keeping only one species allows a test of the conservation properties of the like-particle colli-
sion operator. In a second stage, a trace impurity is added and the transfer rates of momentum
and energy from one species to another are computed. The main ion species is deuterium while
impurities are helium, carbon and tungsten, in the trace limit NzZ> < Np. A typical grid is (N,
Ng, N, Ny .Ny) = (64,64,8,256,32).

Particle, momentum and energy conservation laws have been checked by running the code in
the single particle case, with an initial distribution function that is a centered Maxwellian. The
density, parallel velocity and temperature radial profiles are constant, and their normalized val-
ues are initialized to one. For each fluid quantity Xp, the absolute error §Xp = |Xp(t) — Xp(t = 0)|
is calculated at mid-radius after a deuterium collision time ¢t — Tpp. The normalized collision-
ality is v}y = (a/R0)73/2 vp (qRo/vrp) = 2. The errors are found to be SNp ~ 1077, oV)p =~
1012 and 87p ~ 107, These errors are negligible when compared to the typical increments of
the fluid quantities due to transport and sources during the same time lags.

Relaxation towards a Maxwellian is tested by initializing the code with a distribution func-
tion that is far from a Maxwellian in the parallel direction. Figure 1 shows that the initial state

(fig. 1a) relaxes towards a Maxwellian distribution function (fig. 1b). The exchange of momen-
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Figure 1: 2D plot in the velocity space of the distribution function at initial (a) and final (b) time.

tum between the impurity and the main ions is investigated first. The code is initialized with a
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deuterium distribution function that is a shifted Maxwellian in the low Mach number limit, with
Vji/vri = 0.05. The initial distribution function of the impurity is a centered Maxwellian. Den-
sity and temperature profiles are flat with 7p = T7. The evolution of the mean parallel velocity
is given by

Ve = ~Var(Vja = Vip) (6)

where v,;, is the momentum collisional transfer rate. In the case of thermal relaxation, the ini-
tial distribution function is a centered Maxwellian with constant density. The initial deuterium
temperature is chosen larger than the impurity temperature, 7p > 7. The time evolution of each
temperature is dictated by an equation similar to Eq.(6 ), with velocities replaced by tempera-
tures. The time evolution of the mean velocity and temperature differences are shown on figure

2. The collisional damping rates are found to agree with the theoretical values.
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Figure 2: Time evolution of the difference between the parallel flow and temperature of the main ion

species and those of helium, carbon and tungsten impurities.

Recovering the theory of impurity neoclassical transport

A more challenging test consists in recovering the neoclassical theory of impurity transport.
In this case, the Lagrangian derivatives along the particle trajectories are retained. We con-
sider here the case where the main ion species is deuterium in banana regime, while the second
species is a trace impurity in various collision regimes, depending on mass and charge. Gradi-
ents are below the instability threshold (no turbulence), so that collisional transport only is left.

The expression of the impurity flux is known to be of the form
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where Dy is diffusion coefficient, V; the pinch velocity and r the minor radius. The thermal

I'z=—DzNz <

screening factor H is known to be equal to —1/2 in the Pfirsch-Schliiter regime. In a first step,
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all gradients are set to zero except the impurity density gradient. In that case diffusion only is

expected. The diffusion coefficient is determined by plotting the impurity flux 1% versus the

density gradient —glaz for several values of the gradient. Points lay on a line and the slope is
Zor

the diffusion coefficient Dz. The diffusion coefficient agrees well with the analytical calculation

and values given by the neoclassical code NEO [11], as shown in Fig.3a. A second test consists

in setting a finite main ion density gradient. In that case, an impurity accumulation is expected.

The ratio g—ZZ is found by plotting again the flux versus the gradient. It is equal to the value of

JNyz
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Nyor such that the flux vanishes. It is found to agree with the theoretical expectation Z5 =%, as
1
shown in Fig.3b.
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Figure 3: (a) Diffusion coefficient of helium, carbon and tungsten compared with the Hirshman-Sigmar
analytical prediction and values calculated with the NEO code. (b) Same legend for the ratio Vz/Dy.

Conclusion

A linearized multi-species collision operator has been implemented in the GYSELA gyroki-
netic code. This operator has been numerically tested and is found to satisfy particle, momen-
tum and energy conservation with an excellent accuracy. Also it relaxes towards a Maxwellian.
Moreover the interspecies relaxation rates for momentum and energy well agree with the theo-
retical values. The code is also found to recover the main results of theory for impurity neoclas-
sical transport. The diffusion coefficients are found to agree with analytical expressions and also
with the NEO code. In the isothermal limit, accumulation is found due to the main ion density

gradient. Thermal screening effect is being currently tested and first results are encouraging.
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