4274 EPS Conference on Plasma Physics P2.163

Kinetic Theory of Phase Space Plateaux

F. Eriksson', R. M. Nyqvist' and M. K. Lilley?

U Dept. of Earth and Space Sciences, Chalmers Uni. Tech., 412 96 Géteborg, Sweden
2 Phys. Dept., Imperial College, London, SW7 2AZ, UK

Frequency sweeping signals are attributed to the formation and evolution of phase space holes
and clumps in the non-thermal fast particle distribution [1, 2]. Recently their origin was shown
to follow from the presence of a nearly unmodulated phase space plateau [3], centered at the
wave-particle resonance, which supports a pair of shifted edge modes that destabilize due to
dissipation in the background plasma and nonlinearly evolve into holes and clumps. The role of
the plateau as a hole/clump breeding ground is further substantiated in this article via inclusion
of fast particle collisions and sources. Also, it is demonstrated that relaxation of the plateau
edge gradients has only a minor quantitative effect and does not change the plateau stability
qualitatively.

We consider an electrostatic travelling wave with spatial period A and wave number k =27 /A
in a one-dimensional, uniform plasma equilibrium. The wave carrier frequency is assumed to
be high enough that the plasma can be separated into a cold bulk, comprised of electrons and
immobile ions, and a low density beam of energetic electrons that may interact resonantly with
the wave and therefore need to be treated separately. The cold electrons respond linearly to the

electric field E(x,t), so their perturbed velocity v, satisfies the linear fluid equation
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where the last term is a linear, dissipative friction force that damps the velocity perturbations
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exponentially in time. The fast electrons are described kinetically in terms of their distribution

function F (x,v,t), which evolves according to the kinetic equation
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The right hand side represents fast particle collisions and sources, whose action is to relax F' to-
wards an equilibrium distribution Fy(v) that is taken as a constant, positive slope throughout the
wave-particle resonance. It is modeled by the following combination of operators, commonly

known as Krook-type collisions, collisional drag and velocity space diffusion,
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The system is closed by Ampére’s law
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where n, is the unperturbed density of cold electrons. The plasma wave, with frequency @, is
driven at linear rate y; by the fast electrons and weakly damped at rate y; < ¥ < @pe due to
the friction force. All simulations are performed by means of a numerical algorithm, previously
described in [4], that solves Egs. (1) — (4) for the nonlinear evolution of E(x,¢) and F (x,v,t).
Holes and clumps are nonlinear structures that extend in both real and velocity space and
carry a particle deficit/surplus as compared to the surrounding distribution. Disregarding the
effects of fast particle collisions and sources, they arise symmetrically shifted off the wave-
particle resonance of a kinetically unstable bulk plasma eigenmode. Once firmly established,
they tend to balance dissipative wave damping in the background plasma with the energy tapped
by traversing fast particle phase space as coherent entities. Fig. 1 displays snapshots of the spa-
tially averaged fast particle distribution that illustrate the presence of an intermediate plateau
before the hole/clump pairs are created. At that stage, the initial mode is damped out and ki-
netically stable, but there are shifted resonances situated just inside the edges of the flat plateau
region, responsible for small modulations of the plateau edge that begin to grow and eventually

evolve into a hole/clump pair that detaches from the plateau.
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Figure 1: Intermediate plateau and hole/clump pairs in the fast particle distribution.

Inclusion of fast particle collisions and sources as given by Eq. (3) has significant impact on
the formation (and evolution) of holes and clumps. Collisional relaxation, as mediated by ve-
locity space diffusion or Krook-type collisions, inhibits hole/clump formation from the plasma
wave resonance [5, 6]. Slowing down of the fast particles (drag), on the other hand, promotes
it, in particular the formation and growth of holes [4].

The role of the intermediate plateau is now further substantiated via linear stability analysis of
an unmodulated shelf with continuous edges (see Fig. 2a). Under the assumption that kAv < @y,

the resulting dispersion relation is
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Figure 2: Fast particle distribution for linear stability analysis of plateau state.

where r is defined in Fig. 2a, we have introduced the dimensionless variables

O — Wpe kAv Ya
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and it has been assumed that |Re[z]| < 1 —r. A numerical analysis reveals that Eq. (5) has pre-
cisely three complex roots, of which one, dubbed z, sits at Re [z] = 0 with a negative imaginary
part that vanishes at Y = 0 and whose magnitude increases with 7. It is supplemented by a sym-
metric pair that bifurcates as w varies, the bifurcation point and precise pattern depend on r
as well as y (see Figs. 3a-c). These modes tend asymptotically to the edges of the flat region,
+(1—r), as w — o and were hence dubbed edge modes (denoted z4) in [3]. For a fixed w the
modes shift with the edges towards the plateau center as r increases, as shown in Fig. 3d. Their
imaginary parts remain almost completely constant, however, meaning that relaxation of the

shelf edge within a narrow transition layer has a negligible effect on the plateau stability.
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Figure 3: a) Real (green) and imaginary (red) parts of roots to the dispersion relation (5) when
r=0and y=0. b) Real and c) imaginary parts of roots to the dispersion relation when r =0
and y = 0.1. d) Edge modes (+Re|[z+] in red and 10 x Im|z4] in green) when y = 0.1 and
1—r|

w = 4m. The black line represents the edge of the flat region,

We proceed to further certify the plateau hypothesis by inclusion of fast particle collisions
and sources. The Krook-type and velocity space diffusion operators both inhibit hole/clump
production, as expected. For Krook-type collisions this is illustrated in Fig. 4 where hole/clump
production ceases above roughly /7. = 0.01 when y = 0.1. For diffusive collisions the corre-

sponding rate is v/9;, = 0.1. Collisional drag, on the other hand, promotes hole/clump formation
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Figure 4: Fast particle distribution in the presence of Krook-type collisions with rate By, =
0.005 (left two) and B /7y, = 0.02 (right two) and y = 0.1.

and detachment. The effect on the plateau is a convection of the entire shelf down along the am-
bient linear distribution. Further, linear stability analysis of the shifted plateau in Fig. 2b sheds
light on the previous result that collisional drag enhances holes and their sweeping rates but

suppresses clumps. For large plateau widths, a power series in 1 /w reveils the asymmetry
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These results are further confirmed by nonlinear simulations of an initial plateau as a continuous
shelf of tanh-type, cf. Fig. 5, where the plateau experiences a downward shift and the ensuing

hole/clump pair evolves asymmetrically with a hole that grows faster than the clump.
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Figure 5: Evolution of initial plateau when o./y;, = 0.03 and y = 0.1.
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