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Abstract
We propose an extension of the precessional fishbone model developped by Odblom et al. [1],
which allows taking into account the MHD nonlinearities around the g = 1 surface, and a
linear response for the energetic particles, which are well contained within the g = 1 surface.
The fishbone mode, resulting from the interplay between the trapped energetic particles and
the thermal plasma, is an electromagnetic mode characterized by bursts of activity and
frequency down-chirping. It can cause enhanced transport and losses of energetic particles,
such as ICRH- or NBI-produced particles in present tokamaks, or alpha particles in future

fusion devices, and affect their energy deposition into the plasma.

Introduction

The fishbone oscillation was first observed in the PDX tokamak with nearly perpendicular
neutral beam injection active [2]. It was observed to have a dominant m = 1 poloidal mode
number and n = 1 toroidal mode number, with a radial plasma displacement profile similar
to the internal kink "top-hat" structure. Its frequency was close to the NBI-produced energetic
particles precessional frequency, and was observed to decrease by a factor of about 2 during
each burst.

This instability was later interpreted analytically in two different ways, corresponding to two
different branches. One branch is a fishbone with a frequency close to the precessional drift
frequency of the trapped energetic particles [3]. The other branch is a fishbone with a frequency
close to the ion diamagnetic frequency [4]. In the case of the diamagnetic branch, there is a
gap forming in the Alfvén continuum, within which the mode frequency is contained. In that
case, the MHD resonances are essentially eliminated. In the case of the precessional branch,
there is no gap forming in the Alfvén continuum, so that there are MHD resonances, leading to
nonlinear MHD behavior, in addition to a kinetic nonlinear behavior.

Therefore, a nonlinear description of the precessional fishbone instability is a challenging
problem, because of the interplay between the MHD nonlinearities around the g = 1 surface,

and more precisely at the two Alfvén resonances [1], and the kinetic nonlinearities [5].
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Model

In order to study the competition between the nonlinear MHD and kinetic effects, while still
being able to understand the origin of the different nonlinear dynamics, the model used is based
on a domain separation.

The first domain is the core region centered on

the magnetic axis, and extending up to a radius e
r,A—nnuIar region

lower but close to that of the ¢ = 1 surface. It is

. a1 surface

consedered that all energetic particles are contained
within this region, so that the nonlinear kinetic evo- Core region
lution needs to be studied only in this region. At the
same time only a linearized MHD response is kept

for the plasma bulk, which behaves in an internal Poloi
oloidal

kink-like manner. The second domain is an annular cross section

region centered around the ¢ = 1 surface, in which -
there are no energetic particles. It is considered that Figure 1: Scheme of the domain separation
all MHD nonlinear effects take place in this region.
Annular region

Assuming that this region is a narrow layer centered around r, the radial location of the
q = 1 surface, and considering a single helicity response, it is possible to simplify the geometry
to a two dimensional slab. In the annular region, the nonlinear MHD dynamics are described by
the two fluid Reduced MHD model, meaning that compressibility and anisotropic effects of the

thermal pressure are neglected. The evolution is then given by the frozen-in equation and the

vorticity equation :
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where v is the magnetic flux, proportional to the parallel vector potential, ¢ is the stream
function, proportional to the electric potential, 11 and v represent small but finite resistivity and
viscosity. The Poisson brackets are defined as [f, g] = dxfd,g — J,fdxg, where x =r —r, and y
represents the poloidal variable.
Core region

In this region, where a kinetic description is used for the energetic particles, the fact that there
is a time scale separation between the gyromotion, the bounce motion and the precessional drift

of particles, is used to simplify the study. Indeed, the particles gyro-frequency is much higher
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than the bounce frequency, itself much higher than the precession frequency. Considering that
experimentally, the fishbone mode has a frequency close to that of the precessional motion, a
gyro and bounce averaging is done. Furthermore, only deeply trapped particles, with a velocity
parallel to the magnetic field that is negligeable, are taken into account. This fact allows con-
sidering a simplified two dimensional phase-space, that is described in action-angle variables
represented by the toroidal momentum P, and the toroidal angle o respectively. A last sim-
plification is to consider that the energetic particles are characterized by a single value of the
magnetic moment : 4 = U,. In this case, the Hamiltonian, separated in an equilibrium part and

a perturbation, reads :
H(%VH;Pa,a):HO(H*;VH :OaPa)‘f’Hl(O‘,Pa) (3)

In the Vlasov equation, the equilibrium contribution gives the precession frequency:
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The perturbed Hamiltonian is given by the electric potential of the m = n = 1 mode, which
has a kink-like structure : a rigid displacement of the whole core, characterized by ¢ /r nearly
constant. The perturbed Hamiltonian reads

¢(rb0und7 a)’nzl
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where the radius r = r(Py) is a function of the toroidal momentum and rp,,, defines the bound-
ary between the core and the annular regions.
Coupling

The coupling between the particle dynamics and the bulk plasma evolution is done includ-
ing the particle pressure in the linearized MHD response of the core. Integrating in space this
response, from the magnetic axis to the boundary between the two domains, we obtain a time

dependent boundary condition:
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where P, , = [UBr fd3v is the energetic particle pressure.
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Linear Results
Linearizing the Vlasov equation and the Reduced MHD equations, while taking into account

the boundary condition coupling the two different dynamics, it is possible to obtain a dispersion
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relation. This is done in a way similar to that of Odblom et al. [1], but taking different assump-
tions for the energetic particles distribution function. The differences come from the need to be
able to describe, in the future, the nonlinear kinetic dynamics.

Taking a distribution function of the form F,, = AF(r)6(v| )6 (% — 1), the dispersion relation

reads :
_ 120 (~4F) .
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where K is a normalized energetic content, and 7T is a characteristic precession period
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Using this model, it is possible to get a threshold condition for the fishbone instability assum-

ing that the distribution is:

e monotonically decreasing with radius, consistently with what would be expected from

energetic particles in a fusion reactor
e going to a constant at the magnetic axis, and towards the g = 1 surface

e varying rapidly over a radial length small compared to r

Furthermore, the g-profile is considered to be nearly equal to 1 over all the core region.
With all these assumptions taken into account, the dispersion relation is simplified to :
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where y( is the normalized radius around which ‘2—1; is peaked. This simplified dispersion relation

gives, for the threshold condition :
1 1
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These values are confirmed by numerical simulations based on the model presented in this
paper.
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