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ABSTRACT 

Resonant magnetic perturbations (RMPs) have been applied in tokamaks to mitigate 

or even suppress plasma edge localized modes (ELMs) [1]. For some RMPs, it is necessary 

to considere the plasma response to accurately calculate the perturbed magnetic field inside 

the plasma. Several models have been used to estimate the plasma response according to 

references [2-4]. In this work we consider an ergodic magnetic limiter to create a RMP [5], 

superimposed to large aspect ratio tokamak equilibrium, and a resonant current sheet inside 

the tokamak to simulate the plasma response. For a given perturbation the plasma response 

is estimated, as proposed in [3], by choosing the current sheet on the internal surface to 

produce a null radial magnetic field on that surface. Equilibrium and non-uniform escape of 

the chaotic field lines are analyzed under the influence of plasma response. 

1 –  INTRODUCTION 

Several works have been used RMPs in tokamaks due to beneficial effects to 

mitigate or even suppress plasma edge localized modes in high confinement (H-mode) 

plasmas [1-3]. The literature shows the plasma reacts to RMPs modifying the magnetic 

field line transport [1].   

2 – RESONANT MAGNETIC PERTURBATIONS 

Resonant magnetic perturbations (RMPs) are widely employed in order to modify 

edge instabilities [5, 6]. In order to provide an analytic treatment to the inclusion of RMPs, 

the cylindrical coordinate system is used in this work, with contravariant components 

 , ,r z  and covariant base  , ,r ze e e

  
 expressed as a function of Cartesian coordinates 

 , ,x y z  as described in ref. [5]. All equations in this work are derived considering an 

infinite cylinder with periodic length equal to 2R0 along its symmetry axis.  

Since the RMPs are originated from helical wires and helical current sheets, it is 

possible to define the following vector, which expresses the direction of a helix: 
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where b is the cylinder radius and d dz  . 

 In order to analyze RMPs generated along helices, it is defined the parameter:  
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which is constant along a helix and defines its winding law, with mode numbers m0 and n0. 

 Considering a RMP that is resonant to the surface 0r r  and its electrical current is 

located at the surface jr r , the perturbed magnetic field ( B


) is calculated from Maxwell 

equations and it is associated to a scalar field: 
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where  k zI k r


  and  k zK k r


  are, respectively, the modified Bessel function of the first 

and second kind with order k  and argument zk r . The constants ,z

i
k kC


 and ,z

e
k kC


 must be 

calculated from the boundary condition expressing the magnetic field discontinuity along 

the surface jr r : 
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where j is the surface current at jr r . 

3 – MAGNETOHYDRODYNAMIC EQUILIBRIUM 

The magnetic field associated to the magnetohydrodynamic (MHD) equilibrium can 

be obtained from the Grad-Shafranov equation [5], which provides the following covariant 

components: 
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where pI  is the plasma current, eI  is the poloidal current and a is the plasma column 

radius. 

 Table 1 shows numerical values for variables used in this work, corresponding to 

the geometry and the operation of the TCABR tokamak [7]. 

Tab. 1. Parameters values used to perform calculations. 

Parameter Value 
Plasma current: Ip (A) 47.0 10  
Poloidal current: Ie (A) 64.0 10  

Plasma column radius: a (m) 0.18 
Cylinder radius: b (m) 0.22 

Constant   3.0 

Characteristic length: R0 (m) 0.61 

The safety factor (q) along the plasma cross section is shown in Fig 1. 
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Fig. 1. Safety factor along the plasma cross section. 

 4 – HELICAL WIRES PERTURBATION 

Two helical wires conducting electrical current Ih in opposed senses are placed at 

the surface jr b  with the winding laws  0 0 00 m n z R   and  0 0 0m n z R   . The 

resonant surface is located at 0 0.161 mr  , corresponding to 0 4m   and 0 1n  . Figure 2 

shows Poincaré sections for 0.1%h pI I  and 1.0%h pI I  . 

 

 

(a)           (b) 
Fig. 2. Poincaré sections for modal numbers m0 = 4, n0 = 1 and: a) Ih = 0.1%Ip; b) Ih = 1.0%Ip. 
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5 – PLASMA RESPONSE 

The effect of plasma response can be seen as magnifying or attenuating magnetic 

islands in Poincaré plots. In order to mimic the situation where the size of magnetic islands 

is reduced as a consequence of plasma response, it is imposed that the component of 

perturbed magnetic field orthogonal to the surface where a helical current sheet is located 

must be zero [3]: 

 0B r 


 (6) 

where B


 includes the RMP generated by both the helical windings and the current sheet. 

 Figure 3 shows the effect of including the plasma response model to the Poincaré 

sections. 

 

(a)           (b) 
Fig. 3. Poincaré sections for modal numbers m0 = 4 and n0 = 1 and Ih = 1.0%Ip: a) without plasma 

response model; b) with plasma response model. 

6 – RESULTS AND CONCLUSIONS 

Although the plasma response model presented in this work has been proposed to 

cylindrical plasma, it may be applied to any geometry. The next step to improve the model 

corresponds to the inclusion of a toroidal geometry through a polar toroidal coordinate 

system, which is capable of simulation Shafranov shift [5, 6]. 
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