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I. Introduction. A simple description of drift wave transport in presence of a zonal flow uses the
dynamics of a test particle described by a Hamiltonian system which is liable to present chaotic
behavior when the fluctuation amplitude is large. The zonal flow is manifested by the presence
of a barrier to radial transport. To zeroth order in the particle Larmor radius the effect of the
transport barrier in isolating the central plasma is erased for large enough fluctuation level.
However, the inclusion of finite Larmor radius effects has been found to restore the barrier
[1]. This is important for alpha particle confinement since it indicates that they are affected
by a transport barrier even for large fluctuation levels. Another interesting problem is whether
the type of transport is diffusive or not. This can sometimes be inferred from the statistical
properties of transport since the variance of the particle distribution may exhibit a nonlinear
dependence with time. In this work we have analyzed the statistical behavior of a large group
of test particles in order to determine the resulting probability distribution function (PDF) for
displacements in the poloidal direction, i.e. parallel to the transport barrier in non-monotonic

zonal flows (non-twist Hamiltonian) taking into account finite Larmor radius (FLR) effects.

I1. Test particle model with FLR effects.

Consider a test particle subject to the E x B drift velocity, with B along the z direction, which
assumes that the particle follows the guiding center velocity. For finite gyroradii the particle
actually samples spatial regions around the guiding center and this effect can be accounted for

by taking the average of the drift equations over the gyroradius. Thus, the equations are

d_x__<f’_¢> d_y_<8_"’> (1)
dr Ay /e’ dt — \dx/,

where the gyroaverage, (), is defined as (¥)g = 2 02”‘P(x—|—pcos 0,y+psinB)do . x and

y are radial and poloidal coordinates. This represents a Hamiltonian system with (@)g as the

. . - . . R _dey
Hamiltonian. In our model ¢ = ¢ + ¢ where ¢y is the zonal flow, given by iip(x) = 7 =
sech’x, and the fluctuations ¢ are given by two modes of the Hasegawa-Mima equation, in the

co-moving frame of one mode. Its gyroaverage is,

(90)o =Jop(x) —Mx+ 81J,'qp (x)cos(ky) + 82J,22p (x)cos(kyy — ot), 2)
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where the prime denotes the derivative of the function Ji, (x), which is defined by,
1 T
Jp(x) = E/ tanh (x+ pcos0)cos (kpsinB)do . 3)
0

The equations 1 with 2 are integrated to determine the particle evolution. When &, = 0 the sys-
tem is time independent and the phase space (in our case the x — y space) has integral surfaces.
In general, it is characterized by two resonances on each side of the shearless point, where the
mode velocity equals the flow velocity. For p = 0 the resonances can form two sepparate chains
of islands (heteroclinic, when wave amplitude is low, see Fig. 1) or they can join in coupled
chains (homoclinic, for large wave amplitude). For finite p the island chains separation grows
with p and eventualy a bifurcation occurs that forms 4 island chains. When &, # 0 the system
is non integrable and chaotic regions appear near rational surfaces, which widen as & grows.
But the shearless curve (between the islands) acts as a barrier that particles cannot cross until &
exceeds a certain threshold that depends nonlinearly on p [1]. Chaoric transport is thus limited
by this transport barrier in radial (x) direction. On the other hand, poloidal (y) transport is not
blocked by this effect and is thus interesting to study its properties in the non-twist Hamiltonian
associated with the radial barrier. The statistical properties in the twist case (no barrier) were

studied in [2] and in [3] including FLR effects.

III. Transport properties.

In order to study the nature of transport in

y direction we place a large number of parti-

cles centered around the hyperbolic point of Al
Fig. 1 and let them evolve for a sufficiently >3
long time. They comprise closed and open or- 2
bits in comparable proportions. Typically we 1t

use about 10* particles but sometimes larger
numbers are required to separate the different
populations. The integrations are lengthy but Figure 1: Topology of phase space.

we can take advantage of the independence of

particle trajectories to perform parallel computations. Therefore we use GPU parallel program-
ming based on CUDA in order to speed up the process. With this technique, execution times are
found to improve by a factor of up to 100. In this way, the PDFs can be efficiently found. The
behavior depends on the values of the parmeters €1, €& and p. There are three types of particle
trajectories: (1) trapped in the islands (2) free-streaming that flow unhindered along y and (3)

trapped-flight which alternate between the two (the most common, also called sticky-flight). For



4274 EPS Conference on Plasma Physics P2.185

non chaotic cases (& = 0) only the first two populations are present and are clearly separated;
the orbits are deterministic. The distribution functions along y are shown in Fig. 2. For & # 0
chaotic transport produce sticky-flight orbits and the distribution fuctions are wider as seen in

Fig. 3.
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Figure 2: Distribution function of Figure 3: Patricle distribution func-
particles with non chaotic orbits. tion with chaotic orbits.

The population that stays near zero usually keeps the local coherence, while those that travel
to the left or right display quite different behaviors. The figures presented give a sample of this
variety. Usually one of the two extremes can have a more coherent shape and that is the one
most commonly analyzed here. When the dispersion in particles looks wild the analysis cannot
be performed.

The interesting property to follow is the width of the distribution as this is a meassure of the
statistical spread that determines the transport type. Thus the variance ¢ of the distribution of a
single population is analyzed and its time dependence is determined. For diffusive transport the
linear relation o o< ¢ is satisfied. However, nondiffusive behaviors have a nonlinear dependence
of the type ¢ o Y. When this is done in the cases with chaos it is generally found that y ~ 2
which is indicative of superdiffusive transport.

Another important charcteristic of the transport is the form of the probability distribution
function (PDF). For diffusive transport the PDF is Gaussian. However, for some cases here
when & = 0 they are not Gaussian, but present tails that decay more slowly. This is evidence
for non-diffusive transport. This can be seen in Figs. 4 and 5 where the two types of distributions
are obtained. The first case, with large & chaos level is high and the PDF is Gaussian since the

information about trapped or free orbits is lost. In the second case the PDF is non Gaussian hav-
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ing a long tail on the right side. The tail is realted to the presence of long flights in some orbits.
Trapping and circulating events in the particles trajectories are equivalent to Levy flights. It has
been found that the long tails are described by Levy distributon functions [4] which asymptoti-
cally have the dependence F o x~*. For a Levy-type PDF it is required that the exponent u < 3,
so that the decay is slow enough. In the cases analyzed we have several situations with u < 3

although it is difficult to assign a value due to the complicated PDFs found.
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Figure 4: PDF with high level of

chaos with a Gaussian-like behavior.
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Figure 5: PDF with non-Gaussian

distribution in the far population.

The effect of FLR is to increase the non-local effects, i.e. large values of p usually have
lower values of u. The results of having a bifurcation in the phase-space topology (for p >
2.33) is to increase the degree of left right anisotropy. From the analysis we can conclude that
the nondiffusive transport found for the cases of Hamiltonian systems with twist is preserved
for non-twist systems. In particular the superdiffusive nature and the non-Gaussian PDF. FLR

effects are not very noticeable although they modify quantitatively the transport.

Acknowledgements. This work was partially supported by projects DGAPA-UNAM IN106911,
IN109115 and CONACyT 152905.

References

1] J.J. Martinell and D. del-Castillo-Negrete, Phys. Plasmas 20, 022303 (2013)

2] D. del-Castillo-Negrete, Phys. Plasmas 7, 1702 (2000).

3] K. Gustafson, D. del-Castillo-Negrete and W. Dorland, Phys. Plasmas 15, 102309 (2008).

[
[
[
[4] D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998).



