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Response of toroidal drift modes to profile evolution: a small-ELM model?
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Introduction

Toroidal drift instabilities are characterised by short wavelengths perpendicular to the mag-
netic field line and extended structure along it. And as a result of their radial localisation, these
instabilities experience a weak radial equilibrium variation. The ballooning theory exploits this
scale separation. To the lowest order in toroidal mode number rn, the formalism provides the
mode structure along the field line and local complex eigenvalue Qq(x) = @p(x) +iy(x) (x is
a radial variable). To construct the full global mode structure and global (true) complex mode
frequency Q = @ +1y from the leading order local results, we need to proceed to the next order
in n. This higher-order theory then predicts two types of global mode structures depending on
the equilibrium profiles for all toroidal microinstabilities [1, 2]: the Isolated Mode (IM) and
the General Mode (GM). The IM exists for the special situation when the maxima in @y(x)
and 9 (x) are co-located. This mode will typically balloon at the outboard midplane and have a
strong global growth. The GM, however, does not have any constraint on Qq(x) and is therefore

always accessible. It will peak at the top/bottom of the poloidal plane! and is much more stable.

Model system
We demonstrate the essential physics with a global electrostatic toroidal fluid-ITG model for

the perturbed potential ¢; (x, 0) in a circular cross-section geometry with adiabatic electrons [3]:
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The equilibrium parameters are defined in reference [3] (though note that Q is normalised to the

electron diamagnetic frequency ®..). The parameters used in our simulations have been defined

in table 1 and are broadly comparable to those found in the pedestal.

Table 1: Equilibrium parameters used in simulations.
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'In general, the poloidal location where the IM/GM peaks would depend on profiles, shaping etc.
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Eqn. 1 is solved by decomposing 10 1
¢1(x,0) into poloidal harmonics, o ?
ie. 01(x,0) = Y, Om(x)exp(im), I
and mapping the complex frequency N o5l : %
Q,, — id/dt for each ¢,,. Toroidal I » ~ -1m

C 7 mmera, T T e ™

flow-shear Q:P is included through a
Doppler-shift, i.e. Q — Q + I’LQ;)JC- Figure 1: (Left) Evolution of Q,,(t). The instability is an eigen-
An instantaneous complex mode mode when Q,,(t) — Q (vertical line). (Right) The correspond-
frequency Q,,(¢) = idIn@,,/dt is ing eigenfunction.

evaluated at the rational surfaces where the poloidal modes m are expected to peak. For an

eigenmode, we expect Q,,(1) = Q for all m and independent of time.

Stationary plasma profiles

Simulations in this section were performed using the new initial-value code, holding all
plasma profiles fixed in time. The simulations were initialised with noise, and after sufficient
time, the solution converges to an eigenmode (Fig. 1).

Effect of flow-shear
The IM is obtained for a quadratic
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marked against the eigenmode solution
Figure 2: Frame 1 shows the global Q as a function of to eqn. 1 developed in [4] to within 0.1%.
Sflow-shear Yg. Subsequent frames show the evolution of Time for eigenmode formation

IM into GM for indicated values of flow-shears. Starting with arbitrary initial condi-
tions, the IM forms over &(10%) and the GM structure forms over &(103) growth-times y7;q.
These numbers suggest that non-linear regimes are likely to be entered before the linear mode

structures are established. However, eqn. 1 is only valid for strongly unstable modes (1, > 1).
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If we increase n; by 100%, we find
that the global growth rate has increased
by ~ 80%, whereas T, only changes by
0.1%. Therefore close to marginal stabil-
ity, it is possible that yT,;; ~ €(1), and
the structure and growth-rate of these lin-
ear modes may be important in determin-
ing non-linear transport. This should be
investigated rigorously in the future us-
ing a more accurate plasma model.
Floquet Modes

For plasma profiles held at high values
of flow-shear (v > |0.4|), we find that
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Figure 3: Dashed vertical lines in frame I correspond to

potential plots in subsequent frames (anti-clockwise).

the linear mode rotates poloidally. It precesses rapidly through the bottom-half of the poloidal

plane, slowing down in the top-half, performing many cycles, before eventually settling down

at the top as a General Mode, with Vg (¢) — You (Fig. 3). This is consistent with [6] which

concludes that the Floquet form is generally a transient associated with starting conditions.

Dynamic plasma profiles

For results in this section, the flow-shear evolves over three time-scales, with all other plasma

profiles held fixed.
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Figure 4: Fig. 4a-4c show the evolution of the instability’s global growth y (red) as a function of flow-

shear Vg (blue). Fig. 4d-4f show the mode structure for the times indicated by the dashed-vertical lines

in the frames above. The green-horizontal line indicates the IM growth-rate.
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Eigenmode time-scale For slowly varying profiles, the instability retains its eigenmode
structure as it responds to the evolving flow (note that every ¥, has the same value at each time
- Fig. 4a). Assuming typical o,, = 10° s~!, the flow-shear evolves over ~ 100 ms time-scale.

Small-ELM relevant time-scale When profiles evolve over an &'(1) ms time-scale, the
eigenmode identity is lost. This is apparent since different Fourier harmonics grow at different
rates (Fig. 4b). Nonetheless, Yax ~ Yim. However this ¥,y is realised ~ 3 ms after the critical
Ye = 0 is passed (which would give the IM for flows held in time). Note this period is approxi-
mately the time it takes for the IM to form out of arbitrary initial conditions. Finally, we observe
that the mode sits away from the outboard midplane at the time when ¥y = ¥4, (Fig. 4e).

Instantaneous profile reversal Starting with a mode sitting at the bottom of the poloidal
plane, if the flow profile is immediately reversed such that the mode must balloon at the top, the
instability again responds with a characteristic time, comparable to the time taken for the GM
to form from initial noise. Further, all features identified for the small-ELM relevant ramp are
recovered, and we additionally confirm that, independent of how rapidly the profiles change,

the mode structure retains a coherent form as it gets convected poloidally (Fig. 4f).

Discussion

Could then a GM-IM transition provide a burst of instability corresponding to a small-ELM?
A number of issues need to be addressed before a conclusion can be drawn. First, for our fluid
model, a high growth implies that non-linear regimes are likely to be entered much before the
linear mode structure could respond during a GM-IM transition. It is important that we compare
the GM-IM transition time to growth-times close to a more realistic, marginally-stable, GM
stability boundary. Secondly, if a GM-IM transition does indeed provide a burst in transport,
the profiles are likely to reset and the GM must form again before driving another crash in
the next small-ELM cycle. For our ITG model parameters and typical values of ®,,, the GM
formation time is significantly greater than the inter-small-ELM period (~ by a factor 10).
Again one needs to ascertain this with a more realistic model of the pedestal, including kinetic

ballooning mode physics, for example.
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