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Introduction

Toroidal drift instabilities are characterised by short wavelengths perpendicular to the mag-

netic field line and extended structure along it. And as a result of their radial localisation, these

instabilities experience a weak radial equilibrium variation. The ballooning theory exploits this

scale separation. To the lowest order in toroidal mode number n, the formalism provides the

mode structure along the field line and local complex eigenvalue Ω0(x) = ω0(x)+ iγ0(x) (x is

a radial variable). To construct the full global mode structure and global (true) complex mode

frequency Ω = ω + iγ from the leading order local results, we need to proceed to the next order

in n. This higher-order theory then predicts two types of global mode structures depending on

the equilibrium profiles for all toroidal microinstabilities [1, 2]: the Isolated Mode (IM) and

the General Mode (GM). The IM exists for the special situation when the maxima in ω0(x)

and γ0(x) are co-located. This mode will typically balloon at the outboard midplane and have a

strong global growth. The GM, however, does not have any constraint on Ω0(x) and is therefore

always accessible. It will peak at the top/bottom of the poloidal plane1 and is much more stable.

Model system

We demonstrate the essential physics with a global electrostatic toroidal fluid-ITG model for

the perturbed potential φ1(x,θ) in a circular cross-section geometry with adiabatic electrons [3]:[
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The equilibrium parameters are defined in reference [3] (though note that Ω is normalised to the

electron diamagnetic frequency ω∗e). The parameters used in our simulations have been defined

in table 1 and are broadly comparable to those found in the pedestal.

Table 1: Equilibrium parameters used in simulations.

a kθ ρi ŝ εn τ q n m0 γE = dΩφ/dq

0.5 0.2 25.0 0.08 1.0 1.4 50 70 [-0.7, 0.7]

1In general, the poloidal location where the IM/GM peaks would depend on profiles, shaping etc.
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Figure 1: (Left) Evolution of Ωm(t). The instability is an eigen-

mode when Ωm(t)→Ω (vertical line). (Right) The correspond-

ing eigenfunction.

Eqn. 1 is solved by decomposing

φ1(x,θ) into poloidal harmonics,

i.e. φ1(x,θ) = ∑m φm(x)exp(imθ),

and mapping the complex frequency

Ωm → i∂/∂ t for each φm. Toroidal

flow-shear Ω′
φ

is included through a

Doppler-shift, i.e. Ω→ Ω+ nΩ′
φ

x.

An instantaneous complex mode

frequency Ωm(t) = i∂ lnφm/∂ t is

evaluated at the rational surfaces where the poloidal modes m are expected to peak. For an

eigenmode, we expect Ωm(t) = Ω for all m and independent of time.

Stationary plasma profiles

Simulations in this section were performed using the new initial-value code, holding all

plasma profiles fixed in time. The simulations were initialised with noise, and after sufficient

time, the solution converges to an eigenmode (Fig. 1).

Effect of flow-shear

Figure 2: Frame 1 shows the global Ω as a function of

flow-shear γE . Subsequent frames show the evolution of

IM into GM for indicated values of flow-shears.

The IM is obtained for a quadratic

ITG drive profile ηs = ηg(1.0− ηcx2),

with ηg = 2.0, ηc = 62.5 and flow-shear

γE = 0. As we gradually increase |γE |,

the peak in the real part of the local com-

plex mode frequency ω0(x) is shifted rel-

ative to γ0(x), and dΩ0(x)/dx 6= 0. The

IM is then seen to smoothly evolve into

the GM (Fig. 2), as also observed in

[4, 5]. These results have been bench-

marked against the eigenmode solution

to eqn. 1 developed in [4] to within 0.1%.

Time for eigenmode formation

Starting with arbitrary initial condi-

tions, the IM forms over O(102) and the GM structure forms over O(103) growth-times γTeig.

These numbers suggest that non-linear regimes are likely to be entered before the linear mode

structures are established. However, eqn. 1 is only valid for strongly unstable modes (ηs� 1).
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Figure 3: Dashed vertical lines in frame 1 correspond to

potential plots in subsequent frames (anti-clockwise).

If we increase ηs by 100%, we find

that the global growth rate has increased

by ∼ 80%, whereas Teig only changes by

0.1%. Therefore close to marginal stabil-

ity, it is possible that γTeig ∼ O(1), and

the structure and growth-rate of these lin-

ear modes may be important in determin-

ing non-linear transport. This should be

investigated rigorously in the future us-

ing a more accurate plasma model.

Floquet Modes

For plasma profiles held at high values

of flow-shear (γE ≥ |0.4|), we find that

the linear mode rotates poloidally. It precesses rapidly through the bottom-half of the poloidal

plane, slowing down in the top-half, performing many cycles, before eventually settling down

at the top as a General Mode, with γFM(t)→ γGM (Fig. 3). This is consistent with [6] which

concludes that the Floquet form is generally a transient associated with starting conditions.

Dynamic plasma profiles

For results in this section, the flow-shear evolves over three time-scales, with all other plasma

profiles held fixed.

Figure 4: Fig. 4a-4c show the evolution of the instability’s global growth γ (red) as a function of flow-

shear γE (blue). Fig. 4d-4f show the mode structure for the times indicated by the dashed-vertical lines

in the frames above. The green-horizontal line indicates the IM growth-rate.

42nd EPS Conference on Plasma Physics P2.192



Eigenmode time-scale For slowly varying profiles, the instability retains its eigenmode

structure as it responds to the evolving flow (note that every γm has the same value at each time

- Fig. 4a). Assuming typical ω∗e = 105 s−1, the flow-shear evolves over ∼ 100 ms time-scale.

Small-ELM relevant time-scale When profiles evolve over an O(1) ms time-scale, the

eigenmode identity is lost. This is apparent since different Fourier harmonics grow at different

rates (Fig. 4b). Nonetheless, γmax ∼ γIM. However this γmax is realised ∼ 3 ms after the critical

γE = 0 is passed (which would give the IM for flows held in time). Note this period is approxi-

mately the time it takes for the IM to form out of arbitrary initial conditions. Finally, we observe

that the mode sits away from the outboard midplane at the time when γ = γmax (Fig. 4e).

Instantaneous profile reversal Starting with a mode sitting at the bottom of the poloidal

plane, if the flow profile is immediately reversed such that the mode must balloon at the top, the

instability again responds with a characteristic time, comparable to the time taken for the GM

to form from initial noise. Further, all features identified for the small-ELM relevant ramp are

recovered, and we additionally confirm that, independent of how rapidly the profiles change,

the mode structure retains a coherent form as it gets convected poloidally (Fig. 4f).

Discussion

Could then a GM-IM transition provide a burst of instability corresponding to a small-ELM?

A number of issues need to be addressed before a conclusion can be drawn. First, for our fluid

model, a high growth implies that non-linear regimes are likely to be entered much before the

linear mode structure could respond during a GM-IM transition. It is important that we compare

the GM-IM transition time to growth-times close to a more realistic, marginally-stable, GM

stability boundary. Secondly, if a GM-IM transition does indeed provide a burst in transport,

the profiles are likely to reset and the GM must form again before driving another crash in

the next small-ELM cycle. For our ITG model parameters and typical values of ω∗e, the GM

formation time is significantly greater than the inter-small-ELM period (∼ by a factor 10).

Again one needs to ascertain this with a more realistic model of the pedestal, including kinetic

ballooning mode physics, for example.
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