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Introduction

This contribution presents a new numerical strategy for the computation of the elec-

tric field in multi-scale streamer discharge simulations. The electric field is determined

by using an integral equation method to solve the Poisson’s equation and accelerated

by a fast multipole method (FMM) [1, 2, 3, 4]. An adaptive mesh refinement technique

based on space adaptive multiresolution (MR) [5, 6] is implemented to obtain a hierar-

chy of embedded adapted grids (a binary tree in the case of one spatial dimension). To

show the interest of the method, we present the simulation of a positive streamer dis-

charge by means of a 1.5D model, where the spatio-temporal evolution of the charged

particle densities is solved only along one spatial dimension and the electric field is de-

termined in three dimensions using a disc method [7]. Even though a similar numerical

strategy can be straightforwardly applied to higher spatial dimensions [8], the numer-

ical efficiency of the electric field computation in a 1.5D model can be advantageous,

as this model can be considered, for instance, to investigate thermal electron accelera-

tion [9] or different kinetic schemes in streamer discharges [10]. All the details on the

positive streamer model considered here as well as the numerical strategy to solve the

spatio-temporal evolution of the particle densities can be found in [7], while for the

sake of brevity here we focus only on the computation of the electric field.

Computation of the electric field

The 1D computational domain D is divided into a set of cells of different spatial

resolution. The source distribution ρi(y) is thus given on N leaf nodes Di. Hence,

D = ∪N
i=1Di and the electric field from a charged cylinder of radius R at the target
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Figure 1: The multipole expansion is convergent in the well separated region from the

source panel. R is the radius of the cylinder.

point x on the discharge axis is given by

E(x) =
1

2ε0

N

∑
i=1

ρi

∫
Di

K(x,y)dy, (1)

where

K(x,y) = sign(x− y)− x− y√
(x− y)2 +R2

. (2)

A direct evaluation of (1) over a set of N target points x j clearly requires O(N2) compu-

tations. The FMM relies on an approximation to the kernel K(x,y) by a p-term expan-

sion, with coefficients ψk(R,y) depending on source points alone, and convergent in the

well separated region from the source cylinder (see figure 1), i.e., for |x| >
√

y2 +R2

[3, 4]. Then, we have

K(x,y)≈ sign(x− y)− sign(x)

(
1−

p

∑
k=1

ψk(R,y)x−k

)
= sign(x− y)−

−sign(x)
(

1− 1
2

R2x−2− yR2x−3− 1
8
(12y2R2−3R4)x−4− . . .

)
. (3)

The approximation to the electric field at x can be then expressed as a superposition of

local and far field contributions:

E(x)≈Eloc(x)+
sign(x)

2ε0

p

∑
k=1

Nff

∑
i=1

ρi

(∫
Di

ψk(R,y)dy
)

x−k =Eloc(x)+
sign(x)

2ε0

p

∑
k=1

αkx−k,

(4)

where the moments αk depend only on the distribution of Nff sources in well separated

cells and can be precomputed, while Eloc(x) requires direct integration. Moreover, well
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Figure 2: Adapted grid (left) corresponding to a given charge density (right) for an MR

tolerance of η = 10−6.

separated regions are taken into account on the coarsest level possible regarding the hi-

erarchy of grid refinements. This allows in particular to take into account efficiently

image charges required for Dirichlet boundary conditions. Consequently, the evalua-

tion of E at each leaf node involves O(pN) operations.

Results

Positive streamers are simulated as in [7]. The electric field is computed by means

of the FMM on an MR adapted grid. Grid levels corresponding to a given charge

distribution at 6ns are shown in figure 2, for an MR tolerance of η = 10−6.

Table 1: Computational results (CPU times

tdir and tfmm in ms).

η #AG tdir tfmm speedup

10−3 168 6 2.6 2.3
10−4 349 26 6.3 4.1
10−5 635 87 13 6.6
10−6 1064 244 26 9.4
10−7 2098 947 66 14.3
10−8 2809 1696 97 17.5
10−9 3232 2260 110 20.5
10−10 3900 3340 140 23.8
— 4096 3600 150 24.0

We compare the CPU time for the

FMM, tfmm, with the one required in the

direct computation, tdir (evaluation of

eq. (32) in [7]). Note that the FMM also

involves direct computations, but only

for the local contribution. Table 1 shows

tdir and tfmm for several MR tolerances

η and p = 25, and thus adapted grids

of different size #AG (#AG = 4096 cor-

responds to a uniform grid at level 12).

The speedup obtained with the FMM de-

pends on the number of cells in the adapted grid. Further analysis shows that the com-
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putational complexity of the direct method is indeed of O(N2), whereas the FMM

behaves like O(N1.3) with p = 25. This departure from linear complexity may be due

to the relatively high number of local computations needed to ensure convergence de-

pending on the streamer radius R. Nevertheless, computational speedup is significant

even for cases with very low number of cells. This is achieved also thanks to the higher

efficiency of the FMM when handling boundary conditions requiring image charges.

Conclusion

A new approach was introduced to compute electric field in streamer simulations,

where fast multipole acceleration was implemented on an adapted grid resulting from

space adaptive multiresolution. Moreover, the FMM allows one to account for image

charges needed for Dirichlet boundary conditions very efficiently. The same numerical

strategy can be straightforwardly extended to higher spatial dimensions, where an even

better computational efficiency is expected.
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