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The goal of this work is to gain a deeper understanding of the quality of transport reconstruction 

from modelling of kinetic profiles in the Reversed Field Pinch RFX-mod. The current procedure for 

main gas transport modelling in stationary discharges in RFX-mod aims at computing the transport 

coefficients (D,U) (diffusivity and pinch velocity, respectively) by reproducing the experimental 

data provided by various diagnostics as interferometer, multichannel reflectometer, calibrated edge 

and core Thomson Scattering. The numerical data are computed via synthetic diagnostics, starting 

from the radial profile of the generic kinetic quantity f(r) obtained solving the model transport 

equation: 

( ) SfUfD +−∇⋅∇=0        (1) 

Being an instance of an inverse problem, any conclusion drawn is potentially prone to large 

uncertainties. In RFX-mod a solidly established procedure involves (optimized) lookup tables from 

which candidate solutions are sequentially picked up and evaluated against data using the standard 

χ2
 minimization. This approach proved to be fairly effective on the basis of the experience [1]; 

however, there is room for alternatives, which may promise improvements regard to, at least, two 

aspects: (I) minimize the human intervention, with the spin-off of improving the degree of 

objectivity; (II) provide a more accurate recipe for estimating confidence intervals of estimated 

quantities.  

Genetic Algorithms (GAs) are numerical search tools aiming at finding the global optimum of a 

given real objective function of one or more real variables, possibly subjected to various linear or 

non-linear constraints. In this work we apply a Differential Evolution version of the GA (details can 

be found, e.g., in [2]) to the reconstruction of particle density profiles. The desired output is 

represented by the particle diffusivity D(r) and convection U(r). In this work the velocity profile 

U(r) will be constrained in agreement with the theory of transport in a stochastic magnetic field:

ii
TTrDrU /*)(*.)( ∇−= 50  being Ti the ion temperature profile. Such theory, whose details can be 

found in [1], has proved to be able to describe the transport regime of RFX-mod discharges. The 

diffusivity is approximated by a piecewise function:  
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i

i rrrDrD <<= −∑ 1,)(    (2) 

The targets are just the amplitudes Di, but we 

varied also the number -and accordingly the 

widths- of the intervals [ ]ii rr ,1− , in order to assess 

the sensitivity of the results to these parameters. 

The radial intervals ri are not equally spaced: they 

are denser in the edge region, where density 

gradient and particle source are located.  

For a given choice for D, we compute the 

predicted density profile from the transport 

equation, integrate the solution along the 

experimental lines of sight and compare it with 

the interferometer measurements. At each stage within an iterative loop, the GA produces a set 

(“generation”) of potential solutions (2), using as input the previous generations (the starting 

generation being chosen randomly) and feeds them to the transport code, until an optimum D 

profile, producing the best data reproduction, is identified. Figure 1 shows an example: each 

generation consists of 100 different candidate solutions. The first generations contain very different 

specimens, as highlighted by the wide variations in color between successive generations. 

Eventually, however, they converge towards a stable, optimal solution. The parameterization (2) is 

very convenient for a rough modelling of profiles, but has the unfortunate drawback of producing 

discontinuous profiles for transport coefficients and not penalizing unphysical erratic jumps of D 

between neighboring intervals (see fig. 2). Thus, 

we find a possible solution to alleviate this 

shortcoming. We did not minimize χ2 
itself, but 

rather the functional: 

( )∑ −=+= +

i

ii DDGGH
2

1

2 ,Kυχ   

where G is a penalty function set to avoid 

exceedingly oscillating solutions, with its weight 

υ. Eq. (1) was actually implemented and solved 

using ASTRA code [3] interfaced with a routine 

producing D guesses from GA.  

Figure 1: example of evolution of a population: each 

individual solution is represented by a horizontal line, the 

colours refer to the Di magnitude at a specific radius ri. A 

new generation starts after every 100 individuals. The 

convergence towards a common target is suggested by the 

homogeneity of the population after about 2000 

simulations (~200 generations). 

Figure 2: diffusivity profiles for three values of υυυυ.... 
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Figure 4: average line integral density: experimental data 

with corresponding error bars are plotted with asterisks. 

Black and red full symbols represent respectively the 

numerical profiles found with the GA and with the lookup-

table method 

At this stage we performed simulations with 

different υ, in order to assess its effect and 

importance. Figure 2 reports three examples of D 

profiles, being smoother and smoother as υ 

increases. The final χ2 
is comparable between the 

three cases. Rigorously, υ should be roughly fixed 

by the constraint that the optimal solution shall 

have χ2≈1. The main outcomes of applying GA’s 

to transport analyses at RFX-mod can be 

summarized as follows. (i) The unsupervised GA 

method and the supervised traditional look-up 

table one do yield results of the same quality and 

provide similar transport level. Figure 3 reports the comparison among the interferometer data of 

for shot 30056 at 130 ms (black asterisks), the numerical average line integral density for the 

simulated ASTRA profiles found with the GA (black full diamonds) and the profile obtained with 

the lookup tables (red full circles): the three sets of data are very close, within the experimental 

error bars. This is particularly interesting since the two methods do differ also in the spatial 

structure of the basis functions used to model transport coefficients: the lookup-table method writes 

(D,U) in terms of smooth functions defined globally throughout the whole radius; the GA method 

employs the piecewise functions (2). (ii) Figure 4 

shows the D profile for data shown in figure 3: the 

black line represents the profile with the lowest χ2 

computed with the GA, the grey area shows the 

local confidence intervals (CI’s), defined as the 

envelopes of D solutions such that the 

reconstructed measurements lie within an error bar 

from the measured ones (�� � 1). The CI’s are 

larger in those regions where the true level of 

transport is not effectively probed due to the lack 

of sources and gradients: i.e. the core inside about 

ρ = 0.3 m, in the case of particle density. In the 

same figure, the red smooth line shows the lookup 

table diffusivity profile, in good agreement with the GA solution. (iii) The conclusion from figure. 4 

is that three transport zones may be roughly identified: the core region up to  ρ = 0.3 m, a transport 

Figure 3: diffusivity profile for shot 30056 at 130 ms 

computed with υυυυ=0.5, whose experimental data are 

shown in figure 3. The confidence intervals are shown 

as grey shaded area. The red smooth line shows the 

lookup table result. 
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Figure 5: AIC (red symbols) and χχχχ2 (blue symbols) 

versus the number of parameters k (Eq. 2).  

barrier near to ρ = 0.4 m, a very edge region with  

high transport. By increasing the number k of 

intervals [ ]ii rr ,1−  in (2), we refine the spatial 

resolution of the model, and we may potentially 

improve the goodness-of-fit. This procedure does 

not automatically ensure improving the descriptive 

qualities of the model ,and we use the Akaike 

Information Criterion (AIC) [4] to identify the 

optimum number of knots in the solution. The AIC 

functional is defined as ��� � 2
 � ��� (N being 

the number of interferometer chords). Its minimum 

value provides the optimal solution as a balance between match of the data (quantified by smaller 

χ2
) and economy in the description of the model (smaller k). Figure 5 shows the AIC functional and 

the corresponding χ2
 for different k values: (a) the AIC is minimum for k = 3,4, confirming that a 

three-zones description is an adequate picture, and (b) above k ≥ 3 no improvement in the matching 

of the data is actually meaningful, since χ2
 ≤ 1, i.e., data are interpolated to within the experimental 

errors.  
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