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Exploiting genetic algorithms in transport modelling in RFX-mod
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The goal of this work is to gain a deeper understanding of the quality of transport reconstruction
from modelling of kinetic profiles in the Reversed Field Pinch RFX-mod. The current procedure for
main gas transport modelling in stationary discharges in RFX-mod aims at computing the transport
coefficients (D,U) (diffusivity and pinch velocity, respectively) by reproducing the experimental
data provided by various diagnostics as interferometer, multichannel reflectometer, calibrated edge
and core Thomson Scattering. The numerical data are computed via synthetic diagnostics, starting
from the radial profile of the generic kinetic quantity f{7) obtained solving the model transport
equation:

0=V-(DVf-U f)+S§ (1)

Being an instance of an inverse problem, any conclusion drawn is potentially prone to large
uncertainties. In RFX-mod a solidly established procedure involves (optimized) lookup tables from
which candidate solutions are sequentially picked up and evaluated against data using the standard
x* minimization. This approach proved to be fairly effective on the basis of the experience [1];
however, there is room for alternatives, which may promise improvements regard to, at least, two
aspects: (I) minimize the human intervention, with the spin-off of improving the degree of
objectivity; (II) provide a more accurate recipe for estimating confidence intervals of estimated
quantities.

Genetic Algorithms (GAs) are numerical search tools aiming at finding the global optimum of a
given real objective function of one or more real variables, possibly subjected to various linear or
non-linear constraints. In this work we apply a Differential Evolution version of the GA (details can
be found, e.g., in [2]) to the reconstruction of particle density profiles. The desired output is
represented by the particle diffusivity D(r) and convection U(r). In this work the velocity profile
U(r) will be constrained in agreement with the theory of transport in a stochastic magnetic field:

U(r=-05*D(r)*VT,/T, being T; the ion temperature profile. Such theory, whose details can be

found in [1], has proved to be able to describe the transport regime of RFX-mod discharges. The

diffusivity is approximated by a piecewise function:
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D(r)=ZDl. , I, <r<r, (2)

The targets are just the amplitudes D;, but we
varied also the number -and accordingly the

widths- of the intervals[r,_,r ], in order to assess

the sensitivity of the results to these parameters.
The radial intervals 7; are not equally spaced: they
are denser in the edge region, where density
gradient and particle source are located.

For a given choice for D, we compute the
predicted density profile from the transport
the solution along the

equation, integrate

experimental lines of sight and compare it with
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Figure 1: example of evolution of a population: each
individual solution is represented by a horizontal line, the
colours refer to the D; magnitude at a specific radius r;. A
new generation starts after every 100 individuals. The
convergence towards a common target is suggested by the
homogeneity of the population after about 2000

simulations (~200 generations).

0.4

the interferometer measurements. At each stage within an iterative loop, the GA produces a set

(“generation”) of potential solutions (2), using as input the previous generations (the starting

generation being chosen randomly) and feeds them to the transport code, until an optimum D

profile, producing the best data reproduction, is identified. Figure 1 shows an example: each

generation consists of 100 different candidate solutions. The first generations contain very different

specimens, as highlighted by the wide variations in color between successive generations.

Eventually, however, they converge towards a stable, optimal solution. The parameterization (2) is

very convenient for a rough modelling of profiles, but has the unfortunate drawback of producing

discontinuous profiles for transport coefficients and not penalizing unphysical erratic jumps of D
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Figure 2: diffusivity profiles for three values of v.

between neighboring intervals (see fig. 2). Thus,
we find a possible solution to alleviate this
shortcoming. We did not minimize % itself, but

rather the functional:

H:ZZ+UG>-"G=Z(Di+1_Di)2

where G is a penalty function set to avoid
exceedingly oscillating solutions, with its weight
v. Eq. (1) was actually implemented and solved
using ASTRA code [3] interfaced with a routine

producing D guesses from GA.
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At this stage we performed simulations with
different v, in order to assess its effect and
importance. Figure 2 reports three examples of D
profiles, being smoother and smoother as v
increases. The final y” is comparable between the
three cases. Rigorously, v should be roughly fixed
by the constraint that the optimal solution shall

have %*~1. The main outcomes of applying GA’s
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Figure 4: average line integral density: experimental data

summarized as follows. (l) The unsuperv1sed GA with corresponding error bars are plotted with asterisks.

Black and red full symbols represent respectively the

method and the superv1sed traditional lOOk'up numerical profiles found with the GA and with the lookup-

table method

table one do yield results of the same quality and

provide similar transport level. Figure 3 reports the comparison among the interferometer data of

for shot 30056 at 130 ms (black asterisks), the numerical average line integral density for the

simulated ASTRA profiles found with the GA (black full diamonds) and the profile obtained with

the lookup tables (red full circles): the three sets of data are very close, within the experimental

error bars. This is particularly interesting since the two methods do differ also in the spatial

structure of the basis functions used to model transport coefficients: the lookup-table method writes

(D,U) in terms of smooth functions defined globally throughout the whole radius; the GA method

0:
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Figure 3: diffusivity profile for shot 30056 at 130 ms
computed with v=0.5, whose experimental data are
shown in figure 3. The confidence intervals are shown
as grey shaded area. The red smooth line shows the
lookup table result.

employs the piecewise functions (2). (i7) Figure 4
shows the D profile for data shown in figure 3: the
black line represents the profile with the lowest
computed with the GA, the grey area shows the
local confidence intervals (CI’s), defined as the
envelopes of D solutions such that the
reconstructed measurements lie within an error bar
from the measured ones (y2 < 1). The CI’s are
larger in those regions where the true level of
transport is not effectively probed due to the lack
of sources and gradients: i.e. the core inside about
p = 0.3 m, in the case of particle density. In the

same figure, the red smooth line shows the lookup

table diffusivity profile, in good agreement with the GA solution. (7ii) The conclusion from figure. 4

is that three transport zones may be roughly identified: the core region up to p = 0.3 m, a transport
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barrier near to p = 0.4 m, a very edge region with 26 . 18
high transport. By increasing the number k of 24 F ; 16
intervals [VH:”;] in (2), we refine the spatial 22 \’ // 12
resolution of the model, and we may potentially v % 7 1.2
improve the goodness-of-fit. This procedure does e ) 1%
not automatically ensure improving the descriptive a %i 08
qualities of the model ,and we use the Akaike . Tﬂ- / e
Information Criterion (AIC) [4] to identify the - e —n o
optimum number of knots in the solution. The AIC Y 2 4 e 8 10 1

functional is defined as AIC = 2k + N)(Z (N being Figure 5: AIC (red symbols) and y’ (blue symbols)

. o versus the number of parameters k (Eq. 2).
the number of interferometer chords). Its minimum

value provides the optimal solution as a balance between match of the data (quantified by smaller
%?) and economy in the description of the model (smaller k). Figure 5 shows the AIC functional and
the corresponding ” for different k values: (a) the AIC is minimum for k = 3,4, confirming that a
three-zones description is an adequate picture, and (b) above k£ > 3 no improvement in the matching

of the data is actually meaningful, since y* < 1, i.e., data are interpolated to within the experimental

CITOorS.
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