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1. Introduction

Fast ion confinement is a key point for fusion devices since alpha particles produced in the
fusion reactions must be confined long enough to deposit their energy in the plasma bulk in
order to keep the fusion reactions going on[1]. Moreover, the fast ions coming from Neutral
Beam Injection (NBI)[2] or lon Cyclotron Heating must be also well confined in order to
increase the heating and current drive efficiencies. Fast ion transport must also be studied in
order to find out what are the main escaping points of the ions, since they could damage the
vacuum vessel of the device[3]. Fast ions can also develop instabilities[4] that can enhance
the transport.

The instabilities caused by fast ions have been previously studied in TJ-11[5], but no direct
observation of the dependence of the induced ion transport on the ion energy has been
reported so far. In this work, we study the fast ion transport induced by Alfvén wave
instabilities, which are themselves driven by fast ions coming from NBI. Several types of
Alfvén Eigenmodes (AEs) at different frequencies have been observed in TJ-1l and we

investigate their effect on the NBI ions confinement properties.

2. Experimental set-up

The stellarator TJ-1I heliac flexible is a four period medium size device (Ro=1.5m;a< 0.2
m; Bo = 1 T)[6]. The heating systems are electron cyclotron resonance heating (ECRH) and
neutral beam injection (NBI). The ECRH system has two gyrotrons (300 kW each) tuned
at the second harmonic of the X-mode (53.2 GHz). The NBI system consists of two
injectors of a maximal nominal power of 700 kW each with ion energy of 34 keV in
tangential positions (co and counter injectors).

To scan the energy and population of fast ions in the plasma there is a Compact Neutral
Particle Analyzer (CNPA)[7]. It can distinguish 16 different energies between 1 and 40 keV

with temporal resolution of 1 ms. The line of sight is directed towards the ions coming from
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the co-injector but it only counts ions coming after a re-neutralization in the plasma because
the path between the injector and the CNPA is twisted, so no lost ions from the injector can
contaminate the measurements of this diagnostic.
In TJ-1I there are three Mirnov coil sets distributed at different poloidal positions of the
vacuum vessel. During this work we have used the data of one coil that is located in a set of
12 coils which measures the three components of the magnetic field at four positions
located along a vertical line over the plasma column. The sampling frequency of this array
of coils is 1 MHz.
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3. Observations

High energy ions are collected by the CNPA and the steady state flux of the neutrals
escaping from the plasma after a charge-exchange interaction is measured. We average the
spectra in time windows of 10 ms in order to have enough statistics. In the experiments we
measure the spectra at two different times of the discharge in order to compare the ion
confinement in different conditions. An increase of the steady state flux reflects an increase

of the fast ion density and, therefore, an improvement of their confinement.
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After the onset of the NBI heating a mode appears at around 150 kHz. At the same time
there is a drop of the signal in the high energy channels of the CNPA. This behavior is
observed in different configurations and only above a threshold injected NBI power. Figure
2 left shows the signal received by the CNPA at two times of the discharge. Figure 2 at right
shows the logarithm of the mean power for a Mirnov coil at the same times. As can be seen

there is a clear difference on the signal received by the CNPA, this indicates a difference on

16, : ; ; ) ; . 10’ " r " :
——t=1160 ms
#36151 - #36151 t=1172 ms
ol | =1172 m:
12] T ——t=1160 ms s
2 _ [—t=1172 ms &bl |
5 1 § W[
[=] z ' ‘..
S g/ 1 =
g &) L - ' | .
] W L
af ; .
g . 5
zf | l_\ 1 a3 200 400 600 80O 1000 1200
o 1 (kHz)

5 10 15 25 30 5

20
E (keV)
Figure 2. CNPA data (left) and log of power spectrum for a Mirnov coil signal in the same discharge at two

different times, before and after the trigger of an Alfvén mode.

the fast ion population inside the plasma. The main difference between the two times
represented here is in the power spectra of the Mirnov coil, the decrease of the signal in the
CNPA coincides with the on-set of an Alfvén mode at about 150 kHz. So the onset of the
Alfvén mode leads to a decrease of the fast ion population in the plasma.

The change of configuration has
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As can be seen on that figure there is a clear difference on the decrease of the counts on the

CNPA depending on the magnetic configuration. The main difference between the
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configurations studied is the iota profile, being the rest of the plasma parameters very
similar, so there is an influence of the iota profiles on the fast ion confinement.

On other set of experiments during the NBI phase of the discharge the gyrotrons were
switched on again[8]. The heating by microwaves results on the mitigation of the Alfvén
modes. Simultaneously the flux of fast ions measured by the CNPA increased with the

mitigation of the Alfvén modes as can be seen on figure 4.
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Figure 4. Energy spectra measured by the CNPA (left) and log of power spectra of the Mirnov coil for the

same discharge. It is clearly seen the difference on the energy on the ions depending on the excited mode.

4. Conclusions

Different experiments have shown a decrease of the signal collected by the compact neutral
particle analyzer when Alfvén modes are triggered. Also an increase of the flux of the fast
ions is observed when the Alfvén modes are mitigated when the ECRH is turned on in a
pure NBI plasma. These observations indicate that the Alfvén waves interact with the fast
ions in the plasma destabilizing them with the consequence of loss of confinement.
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