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Introduction

We have developed a one-dimensional fluid-type transport code TASK/TX [1]. The code is
essentially based on a self-consistent two-fluid model, which consists of two-fluid equations
(conservation of mass, momentum and energy) plus Maxwell’s equations. It also involves the
equations for beam ions [2] and neutrals [3]. It differs from conventional diffusive transport
codes mainly in that: the quasi-neutrality condition n. = }; Z;n; and the ambipolar flux condi-
tion ), I'; = 0 need not be imposed; the flux-gradient relationship is not used for particle trans-
port; the neoclassical features are self-consistently reproduced. A main drawback is, however,
that the governing equations are built on the cylindrical coordinates (7,6, ¢), which is equiv-
alent to the large aspect ratio limit of a plasma. In this sense, some physics originating from
magnetic geometry such as the Pfirsch-Schliiter flux has been dropped. Furthermore, due to the
formulation on the cylindrical coordinates, it is difficult to intuitively understand the models and
the results of TASK/TX in comparison with the theory and the models developed on the flux
coordinates. Hence we derive the governing equations of TASK/TX on the axisymmetric flux
coordinates (p, 6, ) and then numerically implement them.

Hereafter we will expand plasma parameters in terms of a small gyroradius and take into
account their non-perturbed (lowest) part. We assume that the drift ordering is appropriate for

the momentum equations whereas the transport ordering for the otherwise equations.

Maxwell’s equations

On the axisymmetric flux coordinates, the magnetic field is expressed as B = VI X Vi + 1V,
where 1(¥) = RB;. Maxwell’s equations consist of Gauss’s law (Poisson’s equation), Faraday’s
law and Ampere’s law. From Faraday’s law E = —V® — A, it is found that the covariant com-
ponents of the electric fields are strongly tied to (the temporal change in) the magnetic fluxes:
Eg=E- \gV{xVp=—,E; = gsE-V{ = (= RE;). Ampere’s law relates (the spatial gradient

of) the magnetic flux to the current. Taking the scalar product of Ampere’s law with V¢ and the
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subsequent flux-surface average (FSA) yield (cf. FSA Grad-Shafranov equation)
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the latter of which is not only the definition of i but also one of the governing equations that
constitutes Maxwell’s equations. This is because it is just alternative form of Faraday’s law.
Taking the scalar product of Ampere’s law with B and then subtracting (1) give the equations
for the toroidal flux in the form:
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When neglecting the displacement current term that is negligibly small, we readily find that the
right-hand sides of (1) and (2) reproduce the expressions of the toroidal and parallel currents.
Finally, the Coulomb gauge allows us to simply write FSA Gauss’s law as follows:
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Continuity equations

A flux-surface-averaged continuity equation is simply given by

1o __, _
i + V%[V na{(ug — ug) : Vp>] = Sna- “)

10
——(V'n,
Vv’ 6t( fa)
TASK/TX is distinguished from other transport codes in that n,{(u, — ug) - Vp) is not approxi-

mated by the convection-diffusion relationship, but is treated as a dependent variable: The grid

velocity ug and the flux n,(u, - Vp) are both self-consistently calculated in the system.

Momentum equations

The parallel motion of plasma species regulates neoclassical properties in axisymmetric sys-
tems. Using the non-conservative form of the momentum equation, we have up to O(6) The
lowest order of the viscous term is the neoclassical viscosity. The viscous term and the fric-
tion term can be calculated according to the moment approach [4]. Reproducing the driving of
poloidal flows, resistivity and the shielding factor of the beam driven current, equations for heat
flows have to be simultaneously solved, as is usual for neoclassical transport solvers. Therefore,

defining (Bq,)) = 2{Bqq))/(5pa), the following equations should be solved:
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Note that source and sink terms have been omitted here and hereafter.

The toroidal momentum equation is important for TASK/TX because it includes the v-Vp
term that provokes a particle flux as well as a jx B torque once losses of beam ions produce
the non-ambipolar flux. In conventional transport codes the particle transport coefficients eval-
uated by external modules are directly substituted in the particle transport equation, whereas
in TASK/TX coupling of the equations self-consistently brings about particle transport through
the continuity equation. While the first-order viscous stress term vanishes due to the CGL form,
the second-order term can be expressed as a combination of a convective momentum flux, a.k.a.
inward pinch, and a diffusive one plus a residual stress. We have to add a turbulent force F SL
that drives a turbulence-induced quasilinear particle flux. The toroidal momentum equation is
finally given by, where (L,) = mqnq(Ruyy),

HRuqr)

1 0
——( (La)) = ———V o

V' or <|Vp|>va£<£a>+(up Mp)<-£a> <|Vp| >Xa(mana

+(I;™)

0
+ Dk - 3 5 Bl + eanaREQ+ e Gonal. (1)

The radial momentum equation or the radial force balance equation is essentially equivalent
to the first-order flow within the flux surface. The leading order is O(1) for pressure and Lorentz

force terms, and the other terms are practically ineffective. Thus, we obtain
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Other equations
Additionally the heat transport equation and the equation that connects (Ru,;) and (u,;/R) are
solved for each species, but their derivation is omitted. As mentioned above, the three equations

for neutrals and the two equations for beam ions, if any, are solved as well.

Numerical results
We here focus on the neoclassical properties in TASK/TX, which implies that the turbulent

particle flux is neglected, i.e., F’ SL

= 0. For the sake of simplicity, the large aspect ratio plasma
with circular cross section is assumed. JT-60U-like plasma parameters are given in the following
simulation.

Figure 1 shows the radial profiles of (a) the difference in the charge density and (b) the particle
flux for each species, respectively, indicating that automatically the quasi-neutrality is well sat-
isfied and the ambipolar flux condition is satisfied as well. A break of the local charge neutrality

in the core region, (ne —nj)/ne, is of the order of 1077, which is always neglected in conventional

transport codes, but this tiny discrepancy is indispensable to give rise to the radial electric field
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Figure 1: Radial profiles of (a) quasi-neutrality and (b) particle flux for electrons and ions.

E, through Eq. (3). As obvious in Fig. 1 (b), the cross-field particle flux is automatically am-
bipolar without imposing ambipolarity. This fact is trivial in the light of neoclassical transport
theory because the flux originates from the electric field and friction forces, but the important
thing is that it is self-consistently recovered by numerical simulations. The breakdown of the
flux cannot be known, but we find that for this case the Ware pinch is dominant over the profile
with the aid of NCLASS [5]

Figure 2 displays the comparison of the

electron parallel flow (Bug)) calculated in o e AT
TASK/TX and that by NCLASS: Clearly the é wol T NCLASS

good agreement is obtained. In TASK/TX '/i

the neoclassical quantities can be internally c\.?/m 800

calculated without external modules such as 1200 | ==

NCLASS. In this sense, TASK/TX is also a 00 o0z o4 o8 o8 10

lassical 1 itself. : . .
neoclassical transport solver by itse Figure 2: Comparison of (Bu) calculated in
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