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Introduction

We have developed a one-dimensional fluid-type transport code TASK/TX [1]. The code is

essentially based on a self-consistent two-fluid model, which consists of two-fluid equations

(conservation of mass, momentum and energy) plus Maxwell’s equations. It also involves the

equations for beam ions [2] and neutrals [3]. It differs from conventional diffusive transport

codes mainly in that: the quasi-neutrality condition ne =
∑

i Zini and the ambipolar flux condi-

tion
∑

aΓa = 0 need not be imposed; the flux-gradient relationship is not used for particle trans-

port; the neoclassical features are self-consistently reproduced. A main drawback is, however,

that the governing equations are built on the cylindrical coordinates (r, θ,ϕ), which is equiv-

alent to the large aspect ratio limit of a plasma. In this sense, some physics originating from

magnetic geometry such as the Pfirsch-Schlüter flux has been dropped. Furthermore, due to the

formulation on the cylindrical coordinates, it is difficult to intuitively understand the models and

the results of TASK/TX in comparison with the theory and the models developed on the flux

coordinates. Hence we derive the governing equations of TASK/TX on the axisymmetric flux

coordinates (ρ,θ,ζ) and then numerically implement them.

Hereafter we will expand plasma parameters in terms of a small gyroradius and take into

account their non-perturbed (lowest) part. We assume that the drift ordering is appropriate for

the momentum equations whereas the transport ordering for the otherwise equations.

Maxwell’s equations

On the axisymmetric flux coordinates, the magnetic field is expressed as BBB = ∇ζ ×∇ψ+ I∇ζ,

where I(ψ) = RBt. Maxwell’s equations consist of Gauss’s law (Poisson’s equation), Faraday’s

law and Ampère’s law. From Faraday’s law EEE = −∇Φ− ȦAA, it is found that the covariant com-

ponents of the electric fields are strongly tied to (the temporal change in) the magnetic fluxes:

Eθ = EEE · √g∇ζ×∇ρ=−ψ̇t,Eζ = gζζEEE ·∇ζ = ψ̇(= REt). Ampère’s law relates (the spatial gradient

of) the magnetic flux to the current. Taking the scalar product of Ampère’s law with ∇ζ and the
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subsequent flux-surface average (FSA) yield (cf. FSA Grad-Shafranov equation)

1
c2
∂ψ̇

∂t
=

1
V′⟨R−2⟩

∂

∂ρ

[
V′
⟨
|∇ρ|2
R2

⟩
∂ψ

∂ρ

]
−µ0

⟨ jζ⟩
⟨R−2⟩

,
∂ψ

∂t
≡ ψ̇, (1)

the latter of which is not only the definition of ψ̇ but also one of the governing equations that

constitutes Maxwell’s equations. This is because it is just alternative form of Faraday’s law.

Taking the scalar product of Ampère’s law with BBB and then subtracting (1) give the equations

for the toroidal flux in the form:

1
c2
∂ψ̇t

∂t
= V′
⟨
|∇ρ|2
R2

⟩
∂

∂ρ

[
1

V′⟨R−2⟩
∂ψt

∂ρ

]
+µ0
⟨B j∥⟩− I⟨ jζ⟩
⟨Bθ⟩ ,

∂ψt

∂t
≡ ψ̇t. (2)

When neglecting the displacement current term that is negligibly small, we readily find that the

right-hand sides of (1) and (2) reproduce the expressions of the toroidal and parallel currents.

Finally, the Coulomb gauge allows us to simply write FSA Gauss’s law as follows:

1
V′

∂

∂ρ

[
V′⟨|∇ρ|2⟩∂Φ

∂ρ

]
= − 1

ϵ0

∑
a

eana. (3)

Continuity equations

A flux-surface-averaged continuity equation is simply given by

1
V′

∂

∂t
(V′na)

∣∣∣∣∣
ρ
+

1
V′

∂

∂ρ
[V′na⟨(uuua−uuug) · ∇ρ⟩] = S na. (4)

TASK/TX is distinguished from other transport codes in that na⟨(uuua − uuug) · ∇ρ⟩ is not approxi-

mated by the convection-diffusion relationship, but is treated as a dependent variable: The grid

velocity uuug and the flux na⟨uuua · ∇ρ⟩ are both self-consistently calculated in the system.

Momentum equations

The parallel motion of plasma species regulates neoclassical properties in axisymmetric sys-

tems. Using the non-conservative form of the momentum equation, we have up to O(δ) The

lowest order of the viscous term is the neoclassical viscosity. The viscous term and the fric-

tion term can be calculated according to the moment approach [4]. Reproducing the driving of

poloidal flows, resistivity and the shielding factor of the beam driven current, equations for heat

flows have to be simultaneously solved, as is usual for neoclassical transport solvers. Therefore,

defining ⟨Bq̂a∥⟩ = 2⟨Bqa∥⟩/(5pa), the following equations should be solved:

mana
∂⟨Bua∥⟩
∂t

=− µ̂a
1(⟨Bua∥⟩−BV1a)− µ̂a

2(⟨Bq̂a∥⟩−BV2a)+
∑

b

ℓab
11⟨Bua∥⟩−

∑
b

ℓab
12⟨Bua∥⟩

+ eana⟨BE∥⟩, (5)

5
2

mana
∂⟨Bq̂a∥⟩
∂t

=− µ̂a
2(⟨Bua∥⟩−BV1a)− µ̂a

3(⟨Bq̂a∥⟩−BV2a)−
∑

b

ℓab
21⟨Bua∥⟩+

∑
b

ℓab
22⟨Bq̂b∥⟩. (6)
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Note that source and sink terms have been omitted here and hereafter.

The toroidal momentum equation is important for TASK/TX because it includes the vvv · ∇ρ
term that provokes a particle flux as well as a jjj× BBB torque once losses of beam ions produce

the non-ambipolar flux. In conventional transport codes the particle transport coefficients eval-

uated by external modules are directly substituted in the particle transport equation, whereas

in TASK/TX coupling of the equations self-consistently brings about particle transport through

the continuity equation. While the first-order viscous stress term vanishes due to the CGL form,

the second-order term can be expressed as a combination of a convective momentum flux, a.k.a.

inward pinch, and a diffusive one plus a residual stress. We have to add a turbulent force FQL
a

that drives a turbulence-induced quasilinear particle flux. The toroidal momentum equation is

finally given by, where ⟨La⟩ ≡ mana⟨Ruaζ⟩,

1
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∂
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1
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The radial momentum equation or the radial force balance equation is essentially equivalent

to the first-order flow within the flux surface. The leading order is O(1) for pressure and Lorentz

force terms, and the other terms are practically ineffective. Thus, we obtain

0 = − 1
ma

∂pa

∂ψ
(⟨B2⟩⟨R2⟩− I2)− ea

ma
na
∂Φ

∂ψ
(⟨B2⟩⟨R2⟩− I2)+

ea

ma
naI⟨Bua∥⟩−

ea

ma
na⟨B2⟩⟨Ruaζ⟩. (8)

Other equations

Additionally the heat transport equation and the equation that connects ⟨Ruaζ⟩ and ⟨uaζ/R⟩ are

solved for each species, but their derivation is omitted. As mentioned above, the three equations

for neutrals and the two equations for beam ions, if any, are solved as well.

Numerical results

We here focus on the neoclassical properties in TASK/TX, which implies that the turbulent

particle flux is neglected, i.e., FQL
a = 0. For the sake of simplicity, the large aspect ratio plasma

with circular cross section is assumed. JT-60U-like plasma parameters are given in the following

simulation.

Figure 1 shows the radial profiles of (a) the difference in the charge density and (b) the particle

flux for each species, respectively, indicating that automatically the quasi-neutrality is well sat-

isfied and the ambipolar flux condition is satisfied as well. A break of the local charge neutrality

in the core region, (ne−ni)/ne, is of the order of 10−7, which is always neglected in conventional

transport codes, but this tiny discrepancy is indispensable to give rise to the radial electric field
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Figure 1: Radial profiles of (a) quasi-neutrality and (b) particle flux for electrons and ions.

Er through Eq. (3). As obvious in Fig. 1 (b), the cross-field particle flux is automatically am-

bipolar without imposing ambipolarity. This fact is trivial in the light of neoclassical transport

theory because the flux originates from the electric field and friction forces, but the important

thing is that it is self-consistently recovered by numerical simulations. The breakdown of the

flux cannot be known, but we find that for this case the Ware pinch is dominant over the profile

with the aid of NCLASS [5]
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Figure 2: Comparison of ⟨Bue∥⟩ calculated in

TASK/TX and by NCLASS.

Figure 2 displays the comparison of the

electron parallel flow ⟨Bue∥⟩ calculated in

TASK/TX and that by NCLASS: Clearly the

good agreement is obtained. In TASK/TX

the neoclassical quantities can be internally

calculated without external modules such as

NCLASS. In this sense, TASK/TX is also a

neoclassical transport solver by itself.
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