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I. Introduction  
 Real tokamaks do not possess toroidal symmetry. When toroidal symmetry is broken, 

particle, momentum, and heat transport fluxes are all enhanced [1,2]. The toroidal angular 

momentum is no longer conserved as expected. A comprehensive transport theory has been 

developed for large aspect ratio tokamaks with broken symmetry. The theory is summarized in 

[3,4]. The transport fluxes are calculated on the constant pressure surfaces because of the 

magnetohydrodynamic (MHD) equilibrium. When magnetic surfaces are not broken, i.e., when 

KAM surfaces are intact, the constant pressure surfaces are the perturbed magnetic surfaces. 

Thus, on the perturbed magnetic surfaces, parallel electron heat conductivity 

€ 

χ||e does not 

contribute to transport fluxes. The results of the theory are in good agreement with numerical 

results in the large aspect ratio limit [5-7]. The theory has since been extended to finite aspect 

ratio tokamaks with broken symmetry [8]. In the superbanana plateau and superbanana regimes, 

perturbed particle distribution is localized in the phase space. This makes it possible to remove 

the assumption of the large aspect ratio in these collisionality regimes [8]. Here, we extend the 

transport fluxes in the collisional boundary layer 

€ 

ν  regime to include the effects of finite 

aspect ratio in tokamaks with broken symmetry, where 

€ 

ν  is the typical collision frequency. 

Again, the extension is made possible by utilizing the fact that the boundary layer solution is 

localized in the phase space.  

II. Magnetic Coordinates and 

€ 

B  Spectrum 

 We adopt Hamada coordinates [9], where magnetic field B can be expressed as 

   B = 

€ 

∇V × ∇θ - ,     (1) 

where V is the volume enclosed inside the magnetic surface divided by 

€ 

4π 2 ,	
   

€ 

θ  is the poloidal 

angle, 

€ 

ζ  is the toroidal angle,  = ,  is the toroidal flux divided by 2 , = , 

€ 

χ 
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is the poloidal flux divided by 2 , and prime denotes . The 

€ 

B =B spectrum on the 

perturbed magnetic surface can be written as 

   B = 

€ 

B V ,θ( )  - 

€ 

B0  

€ 

An θ( )cosnζ0 + Bn θ( )sinnζ0[ ]
n
∑ ,   (2) 

where 

€ 

B V ,θ( )  represents the axisymmetric magnetic field strength on the magnetic surface, 

€ 

ζ0  = 

qθ -ζ is the field line label,

€ 

An θ( )  = 

€ 

{bmnc cos[(m − nq)θ ]
m
∑ + bmns sin[(m − nq)θ]}, 

€ 

Bn θ( )  = 

€ 

{−bmnc sin[(m − nq)θ]
m
∑ + bmns cos[(m − nq)θ]}, and 

€ 

B0  is the magnetic field strength on the 

magnetic axis. The

€ 

An θ( ) , and 

€ 

Bn θ( ) terms are the consequences of the broken symmetry in 

tokamaks. We are interested in the situation that the magnitude of the perturbed magnetic field 

strength is weak enough so that there are no new classes of trapped particles. Thus, the theory is 

applicable for rippled tokamaks when ripple trapping is insignificant. 

III. Bounce Averaged Drift Kinetic Equation 

 The transport fluxes in the collisional boundary layer regime are calculated form the 

solution of the bounce averaged drift kinetic equation. The linear version is [1] 

	
   	
   	
  

€ 

vd •∇ζ0 b
+	
   	
  =	
   ,   (3) 

where  is the perturbed distribution function, is the equilibrium Maxwellian distribution, 

 is the drift velocity, the angular brackets denote the bounce average  = 

€ 

dθ •( ) v||n •∇θ∫ dθ v||n •∇θ∫ ,  is the particle speed that is parallel to B, n is  the unit 

vector in the direction of B.  

 The drift velocity  has the conservative form 

€ 

vd = - 

€ 

v||n× 

€ 

∇ v|| Ω( ), where 

€ 

Ω is the 

gyro-frequency. This form for 

€ 

vd  is valid for low 

€ 

β plasmas. Here 

€ 

β is defined as the ratio of 

the thermal pressure to the magnetic field pressure. However, it is trivial to show that it is also 

valid for finite 

€ 

β plasmas in the radial and 

€ 

∇ζ0 directions. It is the 

€ 

vd  in these two directions 

that appear in Eq.(3). The expressions for 

€ 

vd •∇ζ0 b
, and  can be found in [8]. 

IV. Solution in the Collisional Boundary Layer Regime and Transport Fluxes 

 We solve Eq.(3) in the collisional boundary layer regime for tokamaks with broken 

symmetry. In this regime, the collision frequency is smaller than the toroidal drift frequency. The 

solution in the region away from the trapped-circulating boundary is 
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   = 

€ 

McE
e ʹ′ χ vd •∇ζ0 b

n
∑

€ 

A n cosnζ0 + B n sinnζ0( ) ,	
   	
   	
   (4) 

where E = 

€ 

v2 2, v is the particle speed, 

  = 	
  ×	
  

	
   	
   ,	
   	
   (5) 

 = , = , and  and  are respectively the global maximum 

and minimum of axisymmetric 

€ 

B V ,θ( ) .  

 The solution in Eq.(4) does not satisfy the boundary condition and diverges 

logarithmically at the trapped-circulating boundary where  = 1. A boundary layer analysis is 

needed to make the solution satisfying the boundary condition [10,11]. Because the layer is 

narrow in the pitch angle space, only pitch angle scattering operator is needed in the boundary 

layer analysis without the need of the large aspect ratio assumption. The resultant solution that 

satisfies the boundary condition and matches Eq.(4) when away from the boundary layer is  

    = 

€ 

McE
e ʹ′ χ n

∑

€ 

α n cosnζ0 + β n sinnζ0( ) ,  (6) 

where  

  

€ 

vd •∇ζ0 b

−1

€ 

α n
β n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 

€ 

A n
B n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

1− e− n y cos n y( ) + 

€ 

B n
−A n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

σw

€ 

e− n y sin n y , (7) 

€ 

σw  denotes the sign of 

€ 

vd •∇ζ0 b
, y = 

€ 

1− k 2( ) Δ k 2( )[ ]
−1

is the layer variable, the layer width is 

  

€ 

Δ k 2( )	
  =	
  

€ 

4νD
λ2 1− BM Bm( )2 vd •∇ζ0 b

dθ v|| v∫
dθ B BM( ) v|| v( )∫

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1 2

,	
   	
   (8) 

the pitch angle scattering frequency is 

€ 

νD 	
  =	
  

€ 

νD
ab

b
∑ ,	
    = , the 

the basic relaxation frequency  = , N is plasma density, e is the 

electric charge, M is the mass, 

€ 

vt  is the thermal speed, the subscripts a and b denote plasma 
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species,  is the Coulomb logarithm, the Chandrasekhar function is  = 

, and  is the error function. 

 Using the solution in Eq.(6), the transport fluxes can be evaluated. The Onsager 

symmetric flux surface averaged radial particle flux 

€ 

Γ and heat flux are 

 

€ 

Γ•∇V
q •∇V T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = -

€ 

1
4

€ 

Mc
e ʹ′ χ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

€ 

BM

Bm

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

€ 

dvνD∫ v6 ∂fM
∂V

dk 2
0

1
∫ λ−1 dθ v||

v∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

×
	
  

	
   	
   	
   	
  

€ 

∂α n
∂k 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
∂β n
∂k 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ n

∑ .	
   	
   	
   	
   (9) 

From the flux-force relation [12], these fluxes are related to the toroidal plasma viscosity and can 

be used to model plasma flow in tokamaks with broken symmetry. 

V. Conclusions 

 We have extended theory for neoclassical toroidal plasma viscosity for tokamaks with 

broken symmetry in the superbanana plateau, superbanana, and collisional boundary layer 

regimes to include effects of finite aspect ratio and finite 

€ 

β. They can be employed to model 

plasma flows in finite aspect ratio tokamaks with broken symmetry, invoking flux-force relation. 
*This work was supported by Taiwan Ministry of Science and Technology (MOST) under Grant No. 100-2112-M-

006-004-MY3. 
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