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I. Introduction

Real tokamaks do not possess toroidal symmetry. When toroidal symmetry is broken,
particle, momentum, and heat transport fluxes are all enhanced [1,2]. The toroidal angular
momentum is no longer conserved as expected. A comprehensive transport theory has been
developed for large aspect ratio tokamaks with broken symmetry. The theory is summarized in
[3.4]. The transport fluxes are calculated on the constant pressure surfaces because of the
magnetohydrodynamic (MHD) equilibrium. When magnetic surfaces are not broken, i.e., when
KAM surfaces are intact, the constant pressure surfaces are the perturbed magnetic surfaces.
Thus, on the perturbed magnetic surfaces, parallel electron heat conductivity ), does not
contribute to transport fluxes. The results of the theory are in good agreement with numerical
results in the large aspect ratio limit [5-7]. The theory has since been extended to finite aspect
ratio tokamaks with broken symmetry [8]. In the superbanana plateau and superbanana regimes,
perturbed particle distribution is localized in the phase space. This makes it possible to remove
the assumption of the large aspect ratio in these collisionality regimes [8]. Here, we extend the
transport fluxes in the collisional boundary layer N regime to include the effects of finite
aspect ratio in tokamaks with broken symmetry, where v is the typical collision frequency.
Again, the extension is made possible by utilizing the fact that the boundary layer solution is
localized in the phase space.
I1. Magnetic Coordinates and |B| Spectrum

We adopt Hamada coordinates [9], where magnetic field B can be expressed as

B=yVVxVO. ¥y VI'xVC, (1)

where V is the volume enclosed inside the magnetic surface divided by 4s>, 0 is the poloidal

angle, £ is the toroidal angle, /= B* V{, v is the toroidal flux divided by 27, = B* V0, x
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is the poloidal flux divided by 27, and prime denotes d/dV. The |B|=B spectrum on the

perturbed magnetic surface can be written as

B= B(V.0) - B, >[A,(0)cosng, +B,(6)sinng,], )

n

where B(V,0) represents the axisymmetric magnetic field strength on the magnetic surface, §, =

g6 -¢ is the field line label, A (6) = E{bmnc cos[(m - nq)0]+b,, sin[(m - nq)01}, B,(0)
E{—bmnc sin[(m - ng)0]+b,,, cos[(m-ng)0]}, and B, is the magnetic field strength on the

magnetic axis. The A, (6), and B,(0) terms are the consequences of the broken symmetry in

tokamaks. We are interested in the situation that the magnitude of the perturbed magnetic field
strength is weak enough so that there are no new classes of trapped particles. Thus, the theory is
applicable for rippled tokamaks when ripple trapping is insignificant.
IT1. Bounce Averaged Drift Kinetic Equation

The transport fluxes in the collisional boundary layer regime are calculated form the

solution of the bounce averaged drift kinetic equation. The linear version is [1]

(v, VCO>;,?_COOI+ (v,* VV>b% = <C(f01)>b’ 3)

where f, is the perturbed distribution function, f,,is the equilibrium Maxwellian distribution,

v, 1s the drift velocity, the angular brackets denote the bounce average <°> , =
gﬁd@(')/vun . VH/ngB/V“n * VO, v, is the particle speed that is parallel to B, n is the unit
vector in the direction of B.

The drift velocity v, has the conservative form v,= - v,nx V(VII / Q), where € is the
gyro-frequency. This form for v, is valid for low [ plasmas. Here f is defined as the ratio of

the thermal pressure to the magnetic field pressure. However, it is trivial to show that it is also
valid for finite 8 plasmas in the radial and V§; directions. It is the v, in these two directions
that appear in Eq.(3). The expressions for <Vd . VCO>b ,and <Vd . VV>b can be found in [8].
IV. Solution in the Collisional Boundary Layer Regime and Transport Fluxes

We solve Eq.(3) in the collisional boundary layer regime for tokamaks with broken
symmetry. In this regime, the collision frequency is smaller than the toroidal drift frequency. The

solution in the region away from the trapped-circulating boundary is
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McE
Jor = En 6X<Vd R VCo>b

where E = v° / 2, v is the particle speed,

A, 0, B/B,
Crl= [T ae .
(Bn) L [« -(8/B, -1)/(B,/B, -1)]

0, B/(B,¢)
L [« -(8/8,-1)/(8,/8,-1)] |’ ®

K =(1- )L)/ [)L(BM /B, - 1)}, A=uB,/E,and B,, and B, are respectively the global maximum

iy

(Zﬂ cosng, + B, sinn@o) P
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X
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and minimum of axisymmetric B(V,0).

The solution in Eq.(4) does not satisfy the boundary condition and diverges
logarithmically at the trapped-circulating boundary where k° = 1. A boundary layer analysis is
needed to make the solution satisfying the boundary condition [10,11]. Because the layer is
narrow in the pitch angle space, only pitch angle scattering operator is needed in the boundary
layer analysis without the need of the large aspect ratio assumption. The resultant solution that

satisfies the boundary condition and matches Eq.(4) when away from the boundary layer is

fo = En A;I;E (an cosng, + 3, sinnCO) %

, (6)

where
(1 _eirh cos\/m);) +

o, denotes the sign of <Vd . Vé‘o>b V= (1 - kz)[A(kz)]_lis the layer variable, the layer width is

2\ _ 4v,, g5d6|vn/ V| :
2= {f(l "B, /B, (v, - Ve, $do(5/B, )/(Iv/vl)} | ®

the pitch angle scattering frequency is v, = Ebvf)", vl =y, [q)(v/ V,b)— G(V/ v, )]/(V/ v, )3, the

A,
B,

<vd . V§0>: (%’): BZ" ) o, e Vb sin\/|;y, (7)

n

the basic relaxation frequency v, = 4nN, (eaeb )2 InA / (Vfan ), N is plasma density, e is the

electric charge, M is the mass, v, is the thermal speed, the subscripts a and b denote plasma
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species,InA is the Coulomb logarithm, the Chandrasekhar function is G(x) =
[CD(x) - x(I)’(x)]/(sz ), and ®(x) is the error function.
Using the solution in Eq.(6), the transport fluxes can be evaluated. The Onsager
symmetric flux surface averaged radial particle flux I" and heat flux are
revv \ 1(Mc\(B, )
S iy N /TR fdvaV6(?f—Mfldk2)L’l gﬁd@ X
q*VVv/T) 4\lelx) \B, av Jo
2 (@)+ % ©)
|\ ok ok’ ) |

From the flux-force relation [12], these fluxes are related to the toroidal plasma viscosity and can

M
\

be used to model plasma flow in tokamaks with broken symmetry.
V. Conclusions

We have extended theory for neoclassical toroidal plasma viscosity for tokamaks with
broken symmetry in the superbanana plateau, superbanana, and collisional boundary layer
regimes to include effects of finite aspect ratio and finite (. They can be employed to model

plasma flows in finite aspect ratio tokamaks with broken symmetry, invoking flux-force relation.
*This work was supported by Taiwan Ministry of Science and Technology (MOST) under Grant No. 100-2112-M-
006-004-MY3.
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