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I. Introduction. The solar corona is heated by some mechanism that is still not totally clear

but is likely related to upward propagating Alfvén waves carrying energy from the photosphere

or to dissipation of magnetic energy by magnetic reconnection. These processes release en-

ergy mainly in active regions and then the energy has to propagate to other regions in order to

maintain the whole corona at the observed high temperatures. The global heat transport is very

much influenced by the complex magnetic field geometry which couples distant regions of the

solar corona. This would be expected to produce nonlocal effects in the heat transport leading

to non-diffusive processes. Exploring this possibility requires, among other things, a systematic

quantitative method to analyze the spatio-temporal evolution of the temperature from obser-

vational data. The approach proposed in this paper is based on the use of proper orthogonal

decomposition (POD) methods. We analyze images of the solar corona taken by the Solar Dy-

namics Observatory (SDO) over a period of time following an explosive event focusing on the

evolution of a heat pulse. The images are first processed with the SolarSoft package to obtain

maps of the Emission Measure and of the temperature over the full solar disk. Then, the region

of interest is selected and it is analyzed using two techniques based on POD methods. These are

especially well suited for time dependent events.

II. Images and temperature maps.

The event analyzed took place on 31/8/2012 at around 20:00 UT. There were seven active re-

gions on the visible solar disk. Region 1562 was the originator of the solar flare having strength

C8.4. Using the combination of six filters for the coronal emission as measured by AIA instru-

ment of SDO, the dual maps for the EM and temperature are obtained, following the techniques

developed in [1]. The differential emission measure DEM = d[EM(T,x,y,z)]/dT = n2dh/dT is

used to describe the temperature distribution of plasma emitting along the line of sight h and is

calculated using the intensities Fλ (x,y) of six EUV lines from different ionization states of iron

(Fe VIII, IX, XII, XIV, XVI, XVIII), covering the coronal range from 0.6MK≤ T ≤ 16MK. AIA

records a full set of near-simultaneous images in each temperature filter with a fixed cadence of

12 seconds. The DEM distribution can be reconstructed from the six filter fluxes [Fλ (x,y)] (in

each pixel), by inverting the equation Fλ (x,y) =
∫

DEM(x,y,T )Rλ dT , where Rλ (T ) is th filter

response. This process is simplified with the method of multi-Gaussian functions in the case of
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six-filter data, which is a forward-fitting technique with parameterized DEM distribution func-

tions [1]. The temperature maps were computed for a time sequence covering 16.4 minutes with

a cadence of 12 seconds, as provided by the AIA data. The EM (left) and temperature (right)

maps are shown in Figure 1 for a given time, together with a zoom to our region of interest for

a sequence of times.

Figure 1: EM and temperature maps

with zoom at different times of the re-

gion of the heat front.

Figure 2: Spatial modes uk(ri) (left) and tem-

poral modes vk(t j) (right) for k = 1, 2, 3 in

topos-chronos analysis. Space modes are “re-

folded" to a 2D map

III. POD methods of analysis.

The Singular Value Decomposition (SVD) is, generally speaking, a mathematical method

based on matrix algebra that allows us to build a new basis in which the data is optimally

represented. It is a powerful tool because it helps us extract dominant features and coherent

structures that might be hidden in the data by identifying and sorting the dimensions along

which the data exhibits greater variation. In this, a matrix A of dimension m×n is decomposed

as

A = UΣVT or A =
r

∑
i=1

σiuivT
i
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where U and V are unitary square matrices and Σ is diagonal of dimension m× n. The second

expression is the tensor product of two vectors where r =rank(A). Here ui and vi are the i-th

columns of U and V respectively. The usefulness of this repserentation is that if a matrix is to

be approximated by another of lower rank k, the Eckart-Young Theorem assures that

Ak =
k

∑
i=1

σiuivT
i (1)

is the optimal (in the L2 norm sense) rank-k approximation of A.

SVD is applied to the matrix of the 2D temperature map in the rectangular grid (xi,y j), where

i = 1, . . . ,Nx and j = 1, . . . ,Ny, i.e. A→ T (xi,y j; t). The maps change as a function of time. The

maximun number of elements in the SVD expansion (eq. (1)) is, therefore, k = min{Nx,Ny}.

Two different methods based on SVD are applied to extract specific information.

Topos-Chronos. The first method separates temporal and spatial dependencies of the tempera-

ture to reveal the dominant structures that underlie the process [2]. Since the whole data is a 3D

array Ti jk = T (xi,y j, tk) (k = 1, . . . ,Nt), it has to be reduced to a 2D matrix by “unfolding" the 2D

spatial domain into a 1D vector, i. e. (xi,y j)→ rn with n = 1, . . . ,Nx×Ny. Then, SVD is applied

to the space-time 2D matrix Tnk = T (rn, tk) and the trucation to rank k of the representation is

Ak
i j =

k

∑
m=1

σ
mum(ri)vm(t j). (2)

where 1≤ k≤N∗≡min{NxNy,Nt}. The graphic representation of the topos and chronos modes

can be seen in Fig. 2 for different ranks.

Using this, it possible to make an estimate of the thermal conductivity associated with a diffu-

sive process in the corona. First, the thermal flux entering the region of interest can be calculated

using the time derivative of vk(t). Then, the spatial gradient along the x axis is computed from

uk(r) and used to determine the heat flux from Fourier’s Law (~qT = κ∇kBT ) in terms of the

thermal conductivity (κ). Equating the fluxes, κ can be calculated. In computing~qT we have to

include the fact that a convective flux ~qu is also present. Thus, the total flux is ~qTot =~qu +~qT .

From the heat transfer equation and assuming that the heat enters the volume only through the

left boundary (the others being negligible), it is possible to show that the flux q1 from this side

is
q1

kB
|t j =

3
2

neL
N2 σ

1

[
NxNy

∑
i=1

u1(ri)

]
dv1

dt
|t j . (3)

including only the lowest mode (r = 1, providing an adequate representation), where N = Nx =

Ny, L is the box size and ne = 1015m−3 the plasma density. This is a function of time but its

average value is 〈q1〉t = 2.23× 103Jm−2s−1. On the other hand, the convective flux is deter-

mined by the pulse speed which is calculated by following an isocontour of temperature in time
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obtaining 〈ux〉t = 7.56×103ms−1. For a temperature T =2.5MK, the average convective flux is

〈qu〉t = neT 〈ux〉= 260Jm−2s−1. The corresponding value of κ|t = (q1|t−qu)/|∇kBT | averaged

over time is 〈κ〉t = 3.02×1028m−1 ·s−1. Compared to the collisional value κcol = 3.2
nkBTeτe

me
=

1.315×1028m−1 · s−1 for parallel transport, it is 2.3 times larger, but of the same order.

Figure 3: Snapshots of the data interpolation us-

ing GLRAM for nt = 1,40,80. and for temper-

ature values of 2.5MK. Up: Nose of the thermal

pulse. Down: Full structure of thermal pulse.

GLRAM. The second method, called Gen-

eralized Low Rank Approximation of Ma-

trices (GLRAM) [3, 4], iteratively computes

the matrices that minimize the error in the

approximation of the matrix Ai by a low

range decomposition product, as given by

(min∑
n
i=1 ||Ai− LMiRT ||2F). In each iteration

the error is reduced achieving a fast conver-

gence. The crucial difference with SVD is the

way to represent the data. Here, the unitary

orthogonal bases L and R do not change in

time and the time information is stored in the

matrices of singular values Mi which is not

necessarily diagonal. This allows to find precise contour maps of the temperature as function

of time from which we can obtain the widening of the heat pulse, which determines the type

of heat transport. Fig. 3 shows the evolution of the area between two temperatures, which is a

measure of the dispersion due to transport. The time scaling is of the form A12 ∼ σ2 ∼ tγ . To

exclude advection, only the nose of the front is considered as seen in the upper panel. It is found

that the exponent is γ = 0.78 < 1 indicating that the transport is sub-diffusive.
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