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Introduction

The electron internal transport barrier (eITB) of helical devices plays an important role on

plasma confinement[ 1, 2]. This barrier is known to be formed due to the radial electric field and

the electric field shear is created by the bifurcation of radial electric field (E,) with the electron

cyclotron resonance (ECR) heating. The positive radial electric field formation is consistent

with the electron-root solution of the ambipolarity condition for E, of the neoclassical transport.

In previous results of Compact Helical System (CHS), the barrier is easily formed in larger

effective helical ripple configuration[3]. The barrier formation depends on the magnetic field

configuration through the neoclassical transport characteristics.

Recently, the phenomena that have similar characteristics as the
elTB by the ECR heating have been observed on Heliotron J, and
the steep electron temperature gradient has been observed in the
core region[4]. Both the Heliotron J and CHS belong to helical
type devices, and both the devices have similar size ( The major
and averaged minor radii of Heliotron J are 1.2 and 0.17m and that
of CHS are Im and 0.2m, respectively). On the other hand, both
the devices have different magnetic configurations. Heliotron J is
helical axis heliotron type, and CHS is heliotron/torsatron type,
and the periodicity of Heliotron J is (I,m) = (1,4) and that of CHS
is (I,m) = (2,8). Therefore, comparative study of the phenomena
is carried out between CHS and Heliotron J to investigate the effect
of the magnetic configuration on the eITB formation.

In this paper, the electron temperature and density profiles with
elTB are compared between Heliotron J and CHS to clarify the

transport characteristics. Differences of the eITB formation depen-
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Figure 1: Rotational trans-

form (a) and effective heli-

cal ripple profiles (b) of stan-

dard magnetic configuration

in Heliotron J and CHS.
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dence on plasma density are presented. And the effect of the magnetic helical ripple on the eITB

formation is discussed.

Magnetic configuration characteristics in Heliotron J and CHS

The experiments have been performed on the standard magnetic configuration of both He-
liotron J and CHS, and the magnetic field strength on the magnetic axis of Heliotron J is
B,y = 1.25T, and that of CHS is B, = 0.887. The important difference in the magnetic con-
figuration between both the devices is rotational transform profile[5, 6, 7]. Figure 1(a) shows
the rotational transform profiles of the standard magnetic configuration of Heliotron J and CHS.
The shear of the magnetic field in CHS is positive, while the shear is close to zero in Heliotron
J.

The neoclassical transport of the helical plasma is characterized by the effective helical ripple
(€rf), which characterize the helical 1/v electron transport[8]. The hypothesis of the eITB
formation is that the eITB is easily formed in the larger €,y magnetic configuration, because the
access of the electron-root regime is easy as predicted by the neoclassical transport theory[9].
The difference of the effective helical ripple is shown in Fig.1(b)[7, 10]. The value of the &
of Heliotron J is 2-10 times larger than that of CHS.

Comparison of eITB formation in Heliotron J and CHS

The plasma with elTB is produced by the 3.0
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iments, the neutral beam (F,,; ~ 620kW) is
injected (NBI) into the plasma, however, the Figure 2: Typical electron temperature (a)(c) and

characteristics of the eITB formation is not density profiles (b)(d) with eITB in the Heliotron J

different from the ECR heating only plasma, (a)(b) and CHS (c)(d). Red points denote the profiles

because the deposited power of NBI to the with elTB and blue denote the profiles without elTB.
electrons is smaller than the absorbed ECR power due to the low plasma density. The elec-

tron temperature and density profiles were measured with Nd:YAG laser Thomson scattering
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system using the same analysis procedure[11, 12].

Figure 2 shows the typical electron and density profiles of Heliotron J and CHS with the
elTB formation. Both the profiles have same characteristics. When the eITB is formed, steep
electron temperature gradient is created, and peaked temperature profiles are produced in the
plasma core, as shown in FIg.2(a)(c). The central electron temperature increases up to similar
level of 2 —2.5keV by the barrier formation. On the other hand, the temperatures on the outside
of the peaked profiles with and without eITB are almost equal in both the CHS and Heliotron J.
The peaked electron temperature is formed by small reduction of the plasma density, as shown
in Fig.2(b) (d). These results show the confinement improvement by the barrier formation in
the core region and the confinement degradation due to the profile resilience on the outside of
the peaked temperature region[4]. However, both the results have the different electron density
when the eITB is formed. The density (77, ~ 1.2 x 10'°m~3) of the Heliotron J is approximately

two times larger than that (17, ~ 0.5 X 10"°m=3) of the CHS.

Density dependence of eITB formation in Heliotron J and CHS
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sults and the red and blue circles show the profiles with and  region and the outside of the peaked
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pared to CHS.

Figure 4(b) shows T,(0) dependence on the electron collisionality normalized by the bounce
frequency at p = 0.2 (v;)). The v; is associated with the ion-root to electron-root transition[2].
The v;; of the Heliotron J plasma easily reach the collision-less regime compared to CHS due to
the larger &,¢¢. This is because the bounce frequency is higher in Heliotron J due to the higher
&.rr. Accordingly, there is a possibility that eITB is easily formed in Heliotron J. However, the
elTB formation is realized in higher collisionality in CHS compared to Heliotron J. It shows

that the eITB formation is not dominated by the collisionality alone.
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