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Experiments were conducted on the DIII-D tokamak to study vertically unstable plasma
(VDE) disruption heat loads when mitigated with massive gas injection (MGI). MGI was
performed with neon gas injection from dominantly either above or below the plasma. This
was motivated by the present ITER plan to perform disruption thermal quench (TQ)
mitigation mostly using valves located above the plasma, causing concern that downward
VDEs could be poorly mitigated as a result. However, analysis of localized wall heat loads
from IR camera images and radiated power from fast or slow bolometers shows no
systematic difference in mitigation effectiveness of upper compared to lower gas valves,
regardless of initial impurity injection location. This indicates that TQ mixing of impurities is
faster than VDE timescales, resulting in TQ mitigation with similar global effectiveness for
upper or lower MGI valve location.

The experiments presented here were performed in the DIII-D tokamak [1]. The target
plasmas were an “ITER-like” shape with low triangularity and lower single null. At # = 2000
ms, the vertical stabilization system was turned off and the plasma was given a downward (or
upward) kick with the shaping coils. The
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analysis, the temperature decay at each
Fig. 3. Examples of fits to post-disruption IR data time

sequences at different locations showing: (a)
dismption 1S over, assuming a separable background temperature decay in location with
negligible disruption heating, (b) total temperature
decay in location with comparable initial and
the surface (due to steady_state p]asma disruption heat pulse heating, (c) temperature decay
fits in location with significant initial plasma IR
emission, and (d) temperature decay fits in location
disruption heat pulse. Heat diffusion into a  with significant disruption plasma IR emission.

pixel is fit as a function of time after the

contribution from the initial temperature of

heating) plus the contribution from the
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semi-infinite plane is assumed [3]. Blackbody radiation, lateral heat diffusion, and variation
of wall properties with temperature are ignored. The background temperature cooling time
constant 7 is fit experimentally from lower divertor pixels after upward VDEs, where initial
heating dominates. Typically, 7, =170 ms is found, as shown in Fig. 3(a). A sample fit
where both initial wall temperature and disruption heat pulse are significant is shown in Fig.
3(b). In some pixels, volume plasma IR emission prior to the disruption is significant; an
example of this is shown in Fig. 3(c). This is corrected for by lowering the initial temperature
T, until the background decay curve lies below all data points. To avoid volume IR emission
during the disruption, fits are performed only on data points past the end of the CQ.
Frequently, the data point(s) falling during the CQ time window are observed to lie well
above the fit; this is interpreted as being at least partially due to volume IR emission during

(a) Pre-disruption IR image (b) During-disruption IR image
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calculated disruption heat flux. Figure
4(d) shows a CAD model of the IR

camera view.
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Figure 5 gives an overview of 0D trends Fig. 4. Example IR images for an unmitigated upward VDE
showing: (a) pre-disruption image, (b) during-disruption
image, (c) calculated disruption heat flux, and (d) CAD
VDEs. The data are plotted as a function model of IR camera view.

of the MGI impact delay Az, . Figure 5(a) shows the total radiated energy estimated by

in effectiveness of MGI mitigation of

tomography of the slow bolometers. Figure 5(b) shows the energy going into localized wall
heating estimated from IR images and assuming toroidal symmetry (this includes both
conducted and convected contributions). Figure 5(c) shows vertical vessel motion, giving a
qualitative picture of vessel forces. Figure 5(d) gives the magnitude of the plasma current
decay rate. This gives a rough picture of the amount of impurities in the CQ plasma, with
larger impurity levels giving a lower temperature and a faster current decay rate. The data
with At,,;, =5 ms actually corresponds to unmitigated VDE disruptions with no MGI.
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Figure 5 indicates that there is no significant

global improvement in mitigation
effectiveness of VDEs when using a MGI port
closer to the VDE direction. In contrast, MGI
timing delay Az, clearly has a large effect,
with earlier MGI resulting in higher radiated
energies, lower localized heat fluxes, and
lower vessel motion. Even injecting during the
TQ (At,; =0) appears to have some small
mitigation benefit over not using MGI at all.
This data thus suggests that TQ mixing of heat
and impurities is very effective even when the
plasma is limited on the divertor. This
effective TQ mixing tends to smooth out the
effect of

disruption mitigation indicators. One trend in

injection location on global

the data which is not understood at present, is
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Fig. 5. Global trends in VDE mitigation

effectiveness for different VDE direction/MGI
location combinations as a function of MGI trigger

delay At wcr showing (a) total radiated energy, (b)

total conducted/convected energy, (c) vessel
vertical motion, and (d) CQ current decay rate.

the large difference in heat loads seen between upward and downward VDEs, Fig. 5(b). This

may be due to upper and lower divertor surfaces having different material properties, such as

IR emissivity.
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