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Possible impurity accumulation is one of the crucial problems for the H-mode operation of 

future fusion plant. The impurity flows at the plasma edge determine the pedestal impurity 

density and therefore determine impurity level in the core. Here an analytical model 

describing the poloidal distribution of impurities and their radial fluxes is presented for high 

density H-mode pedestal. The discrepancies with the neoclassical predictions are emphasized. 

The results of the B2SOLPS5.2 [1] modeling in the ASDEX-Upgrade and Globus-M 

geometries with account of impurities are compared with the analytical model. 

The proof of principle modeling of the impurity flows in the case of non-zero electron 

conductivity associated with resonant magnetic perturbations (RMPs) is also discussed.  

1. Analytical model 

To understand qualitatively the behavior of the impurity let us discuss the test (Zeff  –  1<<1) 

highly ionized impurity Za >>1 in the tokamak with 1/ <<= Rrε , circular cross section and 

without Shafranov shift. The toroidal coordinate system ( φθ ,,r ) is used. First, let us consider 

the main contributions to parallel momentum balance for impurities 

0/)(//)( 2
|||| =∂∂+−+∂∂−∂∂− θανθϕθ θθθ rTZnbVVmnreZnbrTnb iaaaaaaaaia   (1) 

Pressure gradient, electrostatic force, main ion-impurity friction and thermal force with 

coefficient 1≥α  are taken into account while inertia is neglected, b . The term BB /θθ =

θϕ ∂∂ /

( +∂

 can be found using the parallel momentum balance for electrons and the condition 

0/) ≈∂θiTei Tn . Then  can be expressed using Eq. (1). Substituting this velocity into 

the continuity equation for impurities, where the radial fluxes are neglected, we have: 
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with θcos0 rRR += , )/( aai mTD ν= , ,)/(2
aaia

T mTZD να= [ ] 1)/(1)/( 2 ≤−+= aieea ZTTTZ αβ . 

The parallel velocity ||V of the main ions is determined by neoclassical effects [2]:

Vb ||θ e subscript 0 denotes average values at the 

flux surface. This expression can be substituted into Eq.(2), and the impurity density can be 

sought as 
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0ii TT <<δ . The linearization of Eq.(2) gives: 
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with the parameters  
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If A >> 1 then the density maximum is situated at the inner or outer midplane [3], if A << 1 – 

at the top or the bottom of the flux surface. The radial flow of the impurity can be obtained 

from the toroidal momentum balance. The other way is to use the diamagnetic and BE
rr

×  

drifts defined from the poloidal force balance, and it gives the same result: 

[ ]iiaair TTnnZneBRZT /)/5.0()/( 10
2

2 δεαβ ++−=Γ . 

Let us discuss two limiting cases:           i) A << 1 and therefore 2102 ,~ nnAnn <<ε . Then 
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This expression can be transformed to the neoclassical one [4]. By the order of magnitude 

 (here  is impurity ε⋅⋅ΓΓ ∇ AB
r ~ )/(0 eBRZTn ai

B =Γ∇ B∇ drift flow). The contribution to rΓ of 

the BE
rr

×  drift is small comparing to the B∇ drift. 

ii) A >> 1, then 2101 ,~ nnnn >>ε  and 
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The first two terms in the sum in the parentheses are mostly responsible for the transport of 

the impurity by the drift, while the electric drift corresponds to the third and fourth terms. 

The first two terms are of the order of   while in case of the Pfirsch-Schlueter 

regime 
 
and the third and fourth terms are of the order of . 

Increasing the value 

B∇

2/ aZε

AB /ε⋅Γ∇

~/ ii ATTδ a
B ZA /ε⋅Γ∇

aZA e come to the situation when the contribution of the >  w BE
rr

×

drift into the radial transport of impurities is bigger than that of the B∇  t, which is not 

typical for standard neoclassical solution. 

drif

In the case of radial conductivity caused by RMPs two corrections are necessary:  

i) the non-zero sin-like pressure perturbation for the main plasma component (ions plus 

electrons) θδ sin)( 0 ppTTnp iei −=+= should be taken into account in the calculation of the 

potential poloidal perturbation. It gives rise to modification of the parameter β . The new 

coefficient is . For A >> 1 the ( /()/(1)/(1 2
1 −= a TppZ δδαβ )[ ]1)/()/ −++ ieeaeii TTTZTT BE

rr
×  drift 
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in the radial flows should decrease due to RMPs, Eq. (6). The pδ  estimate through the RMP 

pump-out flow [5] is in the Pfirsch-Schlueter regime.  )/( 222
iiiii
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ii) The poloidal rotation of the main ions deviates from the neoclassical value in the presence 

of RMPs. As a result the term representing the neoclassical poloidal 

velocity in Eq.(4) changes to the equilibrium poloidal velocity for RMPs [6]. For A >> 1, A 

decreases due to RMPs and the radial flows associated with the electric drift decrease as well. 

 Since the sum A+C does not change with the onset of RMPs, for A<<1 both the 

density perturbation and the impurity radial flow do not change. The changes in this case can 

be only associated with the pump-out and consequent density gradient decrease of the main 

ions, which enters the A+C term.  

Modeling 

The modeling was done for AUG with carbon impurity in the geometry of shot #17151.The 

parameter A was increased by rising the main ion density and corresponding decreasing of 

temperatures and toroidal velocities. The density, ion temperature, and C6+ profiles at the 

outer midplane are shown in Fig.1a-c. The Mach number at the inner boundary of the 

computational domain is 0.2 for all calculations. The values of parameter A for C6+ in the 

pedestal 2 cm from the separatrix at the outer midplane are 0.2, 1.5, 17 for the small, 

intermediate and big density of deuterium. The radial profiles of the flow components of C6+ 

ions through the flux surface are shown in Fig.2a-c. For low deuterium density the dominant 

in the pedestal is ∇ -drift induced flow directed outwards, Eq.(5), while for big density the 

BE
rr

×  drift induced flow directed inwards gives the main contribution, Eq.(6). Radial profiles 

of the fluxes for the calculation with radial conductivity due to RMPs are presented in Fig.2d. 

The conductivity level is chosen big, so that the radial electric field changes the direction. The 

radial BE
rr

× drift induced flow in the region with RMPs is significantly decreased, in 

agreement with the analytical model. Still, the detailed analysis of the C6+ particle balance in 

modeling shows that the divergence of the radial diffusive flow is significant in the barrier 

region and therefore the analytical model can be inaccurate. The other effect which can 

improve the model is the inclusion of centrifugal force, leading to accumulation of both main 

ions and impurities at the outer midplane[7]. In the modeling the parallel momentum balance 

shows that this effect is not big. Still, for big toroidal velocities it can change the radial 

impurity flows. The modeling was also performed for spherical tokamak Globus-M shot 

#34439 with the central density 3.7·1019 m-3 and temperature 490 eV, plasma current 114 kA. 

For such parameters the convective radial transport deviates from neoclassical one, Fig. 2e. 
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Conclusions. The modeling and analytical consideration show the significant deviations of 

the impurity transport from the neoclassical model in the H-mode and pedestal of high density 

discharges. The BE
rr

× radial drift in combination with inner-outer midplane asymmetry of the 

impurity gives significant impurity inward radial flow. At the same time the neoclassical 

contribution associated with flow is decreased due to the smoothening of the impurity 

top-bottom density asymmetry by the poloidal rotation. 
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Fig.1. Radial profiles at the outer midplane (a) electron density, (b) ion temperature, (c) carbon ion density  
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Fig. 2. Radial flows of carbon ions through the flux surface  
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