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1. Introduction. This task is related to evaluation of the electromagnetic forces on the
conducting structures during plasma disruptions [1-7]. Such forces are observed on Joint
European Torus (JET) [2] accompanying with the vertical displacement events (VDES). In
[6], an expression for the force produced by kink modes together with VDEs was derived
using Eq. (43) from [4]. The latter is shown to be incorrect in [7]. This is a sufficient reason
for revision of the predictions made in [6].

Here we calculate the non-axisymmetric (sideways) wall force produced by kink modes
combined with VDEs. We use a model described in [7], but extend it here by considering
three modes and their nonlinear beating.

2. Formulation of the problem. As in [4, 6, 7], we consider a cylindrical plasma with minor

radius r,, surrounded by a coaxial resistive wall of uniform conductivity o, radius r, and
thickness d,, . The plasma-wall gap and space behind the wall are treated as a vacuum. The
magnetic field is described as B=B, +b, where B, is the axisymmetric equilibrium field
(0B,/ot=0) and b is the perturbation. The latter induces the eddy current j=oE in the
wall, where E is the electric field governed by VxE=-db/ot. Then, a force with a volume

density f = jxB will act on the wall. A lateral (sideways) force is defined by

F, = I foe dV = ROrWquS f cos@cos<dads (1)

wall

where e, is the unit vector along a fixed horizontal direction, R, is the major radius, ¢ and

¢ are the poloidal and toroidal angles, respectively, and

out .
f,=— [ (ixB,+jxb)-e,dr sothat d,f, = (Byb, + By, +%b§
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In the quadratic term here, we disregarded a small contribution from b, . Equation (1) shows

that only f, o«ccos@cosd can give a non-zero sideways force. Therefore, m/n=1/1 mode
can contribute into linear term of Eq. (2). This case was discussed in [7]. In quadratic term,
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we need b’ occos@cos¢ . This can be produced by the beating of m/n and m+1/n+1
modes. Here we consider the perturbations in form

b, = b,.11|€OS(6 — &+ 8,1) +|Byyoe | SIN O + [0, 1| SINRO - +5,,) (3)
with &,; and &, that are toroidal phase shifts of the modes. VDE denotes m/n=1/0 mode.

With such b, for ideal conducting wall, Egs. (1)—(2) give a sideways force

F,=F+F,=F ‘ba,n‘ +E ‘bH,Zle,VDE‘

q 2
BO@ BO@

: (4)
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where F =-F,, [1— ; p'ercos5ll was calculated in [7], F, =F, l%coséﬂ,

plw

pl w

zr,

Fen ETJB b, and B, are taken at the wall, g, is the safety factor q=rB,, /(R,B,,)

0¢
at the plasma boundary, J is the total current in the plasma. With ITER parameters [8]:

J=15 MA, B,, =53 T, r,=2m, r,/r, =13, we have F, ;™ =325 MN. A large plasma
vertical displacement was observed on JET at ¢, =1.1 [9]. Using the latter and ITER data
the term F, >37.5 MN requires |b, ,|/ By, >0.25, while the ITER is designed for 48 MN [9].

However, this limit can be exceeded by the contribution from quadratic term of Eq. (4),

which gives F, >22 MN at ‘b‘mb&’vDE VBOZG >0.25. On the other hand, F, =0 at

[1—qp. :—J ©)

A result similar to Eq. (4) is described by Egs. (11)—(15) in [6]. These equations predict

By
COS S, = —2C0S 3, |[———

0,21~0 VDE

a force as a monotone decreasing function of yz, with a maximum at y =0 instead of
yr, ~1 as claimed in [6] for parameters presented in [4], where y is the kink growth rate and
z,, Is the wall penetration time. On the contrary, analysis in [7] shows that F, force must be
maximal in the ideal wall limit at yz, —>o. Here we obtain the same result for F, and

compare it with that in [6].

3. Calculation of the force. We calculate quadratic term of Eq. (2). At nr <<mR, equation

Vip=0 with b=Vg and ¢ => Re[g,, exp(imd—in{)] gives us

O - m[xm+&(xm+xm)} (6)
m 2m
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in the plasma-wall vacuum gap with x=r/r, and T, =-2mB /B, (see also [7,10, 11]).
Then,
b

6,mn |;

=@+, /mb,,,(r,) and b

d,mn

= _ibr,mn (rw+) ) (7)

where b, . =0¢,, /or is the amplitude of b-Vr and r,, =r, +d, . Using these expressions

out

in

side
we introduce d,, f5™ =b, , b, e

w'r2 out ’
d, 149 = 2Re[ T, (14,0, o (1 )b, XP(i0-1C) ®)
that is a force volume density only contributes to sideways force in quadratic term with
azzi{l Dot (8 )01 (T, )} and Ty =2 +T,+T,I, )
I's b, voe (R 20 (F,)

where superscript * denotes a complex conjugate variables.
In [6], the force is finally expressed through the radial component £, of the plasma

displacement &. To move in this direction we use the consequence of (6)

br,mn(r) _ -r_m _y2m y—m-1
br,mn(rw) _[ +2m (1 " ):| " (10)

valid in the plasma-wall gap. If the plasma is ideal as in Ref. [4, 6, 7], we have
b=Vx(ExB,), b, =B,-V¢, and

r-plbr,mn(rpl) = IBJ (m_nqpl )ér,mn (11)

taken at the plasma boundary. Then, Eq. (8) takes a form of

with B, =B,,(r,) and ¢

r,mn

F 82(2 q )(1+a2)K15 gr

T, /T +1-<2)@T, +1-x2) LVRE exp(i0—ig) |, (12)

pl

d,f5*=2Re

where «;, =(r, /r,)" and free parameters: «, and I'y are defined by Eq. (9).

4. Comparisons, estimates, and discussion. In [4, 6], a thin shell approximation was used
that requires continuity of the normal component of b (here, b-Vr) at the wall. Hence

a, =0 and I, is related to y,,, by (see [10, 11] and the references therein)
r.=y.z,  Wwith r,=or.d,. (13)
In contrast to [4, 6], expression (12) gives the wall force increases monotonically with y,

starting from f35° =0 at » =0 and maximal at y =co. Using & ,.& o =

is,
Sran r,VDE‘e * and

y =0, EQ. (12) after integration across the wall volume gives us the sideways force:
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ind = rs, (Z_qpl) §r,21§VDE‘ .

o Q-)-x)

(14)

The result F** described by Egs. (11)—(12) in [6] at » =0 and at y =oo differs from

one another in 1.33 times for chosen parameters in [6]. Comparing them with Eq. (14):
F*=2F"(r2/ri -1) (15)
at y=oo. With r,/r, =2 as in [6] we have F* =6F,°. This shows us that the result

described by Egs. (11)—(12) in [6] overestimates the wall force 6 times. Let us notice that

comparison of F;* in Eqgs. (13)-(14) in [6] with F;, obtained after integration across the
wall volume of Eq. (43) in [4] at y =00 gives us
Rt =2F5 r3/rs . (16)
At r,/r, =3 asin [4], F{* =54F;, despite the statement made right before Eq. (13) in [6]
that F* and Fg, are the same.
In [2], equation F*" =2F, & /r, was obtained. It gives a sideways force on the rigid
ring with current J in the toroidal field B, when this ring is tilted about the axis X by a
small angle a=¢&,/R, so that & is the amplitude of displacement. With ITER [8]

parameters, mentioned in section 2, F;*" =135 MN requires &, /r, >0.27. At q, =1.1,

ézr,ll‘/rm >0.27 and

r, =>0. the sideways wall force > , wnlle
‘/:Zr,21§VDE‘/p2I 0.073 the sideway: Il f F,™ >40 MN, whil

F™ >16 MN calculated in [7]. Thus at g, near 1 the quadratic term F, of Eq. (4)

dominates over linear, which F; — 0 in this case.

5. Conclusion. In contrast to [4, 6], we have shown that the force is monotonically increasing

with yz,, and maximal at y=oco. With the latter the sideways force F, produced by
m/n=2/1 kink mode combined with a plasma vertical displacement can be larger than 48

MN that ITER is designed for [9] at q,, —1 and cfrﬂé\,DE/rpzl >0.073, while F, — 0 [7].
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