

Analytical model of wall force produced by kink modes combined with plasma vertical displacement

D.V. Mironov¹ and V.D. Pustovitov^{1,2}

¹*Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia,*

²*National Research Centre “Kurchatov Institute”, Moscow, Russia*

1. Introduction. This task is related to evaluation of the electromagnetic forces on the conducting structures during plasma disruptions [1–7]. Such forces are observed on Joint European Torus (JET) [2] accompanying with the vertical displacement events (VDEs). In [6], an expression for the force produced by kink modes together with VDEs was derived using Eq. (43) from [4]. The latter is shown to be incorrect in [7]. This is a sufficient reason for revision of the predictions made in [6].

Here we calculate the non-axisymmetric (sideways) wall force produced by kink modes combined with VDEs. We use a model described in [7], but extend it here by considering three modes and their nonlinear beating.

2. Formulation of the problem. As in [4, 6, 7], we consider a cylindrical plasma with minor radius r_{pl} surrounded by a coaxial resistive wall of uniform conductivity σ , radius r_w and thickness d_w . The plasma-wall gap and space behind the wall are treated as a vacuum. The magnetic field is described as $\mathbf{B} = \mathbf{B}_0 + \mathbf{b}$, where \mathbf{B}_0 is the axisymmetric equilibrium field ($\partial \mathbf{B}_0 / \partial t = 0$) and \mathbf{b} is the perturbation. The latter induces the eddy current $\mathbf{j} = \sigma \mathbf{E}$ in the wall, where \mathbf{E} is the electric field governed by $\nabla \times \mathbf{E} = -\partial \mathbf{b} / \partial t$. Then, a force with a volume density $\mathbf{f} = \mathbf{j} \times \mathbf{B}$ will act on the wall. A lateral (sideways) force is defined by

$$F_x \equiv \int_{wall} \mathbf{f} \cdot \mathbf{e}_x dV = R_0 r_w d_w \oint f_r \cos \theta \cos \zeta d\theta d\zeta, \quad (1)$$

where \mathbf{e}_x is the unit vector along a fixed horizontal direction, R_0 is the major radius, θ and ζ are the poloidal and toroidal angles, respectively, and

$$f_r \equiv \frac{1}{d_w} \int_{in}^{out} (\mathbf{j} \times \mathbf{B}_0 + \mathbf{j} \times \mathbf{b}) \cdot \mathbf{e}_r dr \quad \text{so that} \quad d_w f_r = (B_{0\theta} b_\theta + B_{0\zeta} b_\zeta) \Big|_{out}^{in} + \frac{1}{2} b_\theta^2 \Big|_{out}^{in}. \quad (2)$$

In the quadratic term here, we disregarded a small contribution from b_ζ . Equation (1) shows that only $f_r \propto \cos \theta \cos \zeta$ can give a non-zero sideways force. Therefore, $m/n = 1/1$ mode can contribute into linear term of Eq. (2). This case was discussed in [7]. In quadratic term,

we need $b_\theta^2 \propto \cos\theta \cos\zeta$. This can be produced by the beating of m/n and $m \pm 1/n \pm 1$ modes. Here we consider the perturbations in form

$$b_\theta = |b_{\theta,11}| \cos(\theta - \zeta + \delta_{11}) + |b_{\theta,VDE}| \sin\theta + |b_{\theta,21}| \sin(2\theta - \zeta + \delta_{21}) \quad (3)$$

with δ_{11} and δ_{21} that are toroidal phase shifts of the modes. VDE denotes $m/n = 1/0$ mode.

With such b_θ for ideal conducting wall, Eqs. (1)–(2) give a sideways force

$$F_X = F_1 + F_2 = F_l \frac{|b_{\theta,11}|}{B_{0\theta}} + F_q \frac{|b_{\theta,21}b_{\theta,VDE}|}{B_{0\theta}^2}, \quad (4)$$

where $F_l = -F_{Xm} \left(1 - \frac{r_{pl}^2}{q_{pl}r_w^2}\right) \cos\delta_{11}$ was calculated in [7], $F_q = F_{Xm} \frac{1}{2} \frac{r_{pl}^2}{q_{pl}r_w^2} \cos\delta_{21}$,

$F_{Xm} \equiv \frac{\pi r_w}{2} JB_{0\zeta}$, b_θ and $B_{0\theta}$ are taken at the wall, q_{pl} is the safety factor $q \equiv rB_{0\zeta}/(R_0B_{0\theta})$

at the plasma boundary, J is the total current in the plasma. With ITER parameters [8]:

$J = 15$ MA, $B_{0\zeta} = 5.3$ T, $r_{pl} = 2$ m, $r_w/r_{pl} = 1.3$, we have $F_{Xm}^{ITER} = 325$ MN. A large plasma vertical displacement was observed on JET at $q_{pl} = 1.1$ [9]. Using the latter and ITER data

the term $F_1 \geq 37.5$ MN requires $|b_{\theta,11}|/B_{0\theta} > 0.25$, while the ITER is designed for 48 MN [9].

However, this limit can be exceeded by the contribution from quadratic term of Eq. (4), which gives $F_2 \geq 22$ MN at $|b_{\theta,21}b_{\theta,VDE}|/B_{0\theta}^2 > 0.25$. On the other hand, $F_X = 0$ at

$$\cos\delta_{21} = -2 \cos\delta_{11} \frac{|B_{0\theta}b_{\theta,11}|}{|b_{\theta,21}b_{\theta,VDE}|} \left(1 - q_{pl} \frac{r_w^2}{r_{pl}^2}\right). \quad (5)$$

A result similar to Eq. (4) is described by Eqs. (11)–(15) in [6]. These equations predict a force as a monotone decreasing function of $\gamma\tau_w$ with a maximum at $\gamma = 0$ instead of $\gamma\tau_w \approx 1$ as claimed in [6] for parameters presented in [4], where γ is the kink growth rate and τ_w is the wall penetration time. On the contrary, analysis in [7] shows that F_1 force must be maximal in the ideal wall limit at $\gamma\tau_w \rightarrow \infty$. Here we obtain the same result for F_2 and compare it with that in [6].

3. Calculation of the force. We calculate quadratic term of Eq. (2). At $nr \ll mR_0$ equation

$\nabla^2\varphi = 0$ with $\mathbf{b} = \nabla\varphi$ and $\varphi = \sum_{mn} \text{Re}[\varphi_{mn} \exp(im\theta - in\zeta)]$ gives us

$$\varphi_{mn} = -\frac{r_w}{m} B_m \left[x^{-m} + \frac{\Gamma_m}{2m} (x^{-m} + x^m) \right] \quad (6)$$

in the plasma-wall vacuum gap with $x \equiv r/r_w$ and $\Gamma_m = -2m B_m^{out}/B_m$ (see also [7,10, 11]). Then,

$$b_{\theta,mn}|_{in} = -i(1 + \Gamma_m/m)b_{r,mn}(r_w) \quad \text{and} \quad b_{\theta,mn}|_{out} = -ib_{r,mn}(r_{w+}), \quad (7)$$

where $b_{r,mn} \equiv \partial \varphi_{mn} / \partial r$ is the amplitude of $\mathbf{b} \cdot \nabla r$ and $r_{w+} = r_w + d_w$. Using these expressions we introduce $d_w f_{r2}^{side} \equiv b_{\theta,21} b_{\theta,VDE}|_{out}^{in}$:

$$d_w f_{r2}^{side} \equiv \frac{1}{4} \operatorname{Re} \left[\Gamma_\Sigma (1 + \alpha_2) b_{r,VDE}^*(r_w) b_{r,21}(r_w) \exp(i\theta - i\zeta) \right] \quad (8)$$

that is a force volume density only contributes to sideways force in quadratic term with

$$\alpha_2 = \frac{2}{\Gamma_\Sigma} \left[1 - \frac{b_{r,VDE}^*(r_{w+}) b_{r,21}(r_{w+})}{b_{r,VDE}^*(r_w) b_{r,21}(r_w)} \right] \quad \text{and} \quad \Gamma_\Sigma = 2\Gamma_1^* + \Gamma_2 + \Gamma_2 \Gamma_1^*, \quad (9)$$

where superscript * denotes a complex conjugate variables.

In [6], the force is finally expressed through the radial component ξ_r of the plasma displacement ξ . To move in this direction we use the consequence of (6)

$$\frac{b_{r,mn}(r)}{b_{r,mn}(r_w)} = \left[1 + \frac{\Gamma_m}{2m} (1 - x^{2m}) \right] \cdot x^{-m-1} \quad (10)$$

valid in the plasma-wall gap. If the plasma is ideal as in Ref. [4, 6, 7], we have $\mathbf{b} = \nabla \times (\xi \times \mathbf{B}_0)$, $b_r = \mathbf{B}_0 \cdot \nabla \xi_r$ and

$$r_{pl} b_{r,mn}(r_{pl}) = iB_J(m - nq_{pl}) \xi_{r,mn} \quad (11)$$

with $B_J \equiv B_{0\theta}(r_{pl})$ and $\xi_{r,mn}$ taken at the plasma boundary. Then, Eq. (8) takes a form of

$$d_w f_{r2}^{side} \equiv 2 \operatorname{Re} \left[\frac{\Gamma_\Sigma}{\Gamma_1^* \Gamma_2} \frac{B_J^2 (2 - q_{pl})(1 + \alpha_2) \kappa_1^5}{(2/\Gamma_1^* + 1 - \kappa_1^2)(4/\Gamma_2 + 1 - \kappa_2^2)} \frac{\xi_{r,21} \xi_{r,VDE}^*}{r_{pl}^2} \exp(i\theta - i\zeta) \right], \quad (12)$$

where $\kappa_m \equiv (r_{pl} / r_w)^m$ and free parameters: α_2 and Γ_Σ are defined by Eq. (9).

4. Comparisons, estimates, and discussion. In [4, 6], a thin shell approximation was used that requires continuity of the normal component of \mathbf{b} (here, $\mathbf{b} \cdot \nabla r$) at the wall. Hence $\alpha_2 = 0$ and Γ_m is related to γ_{mn} by (see [10, 11] and the references therein)

$$\Gamma_m = \gamma_{mn} \tau_w \quad \text{with} \quad \tau_w \equiv \sigma r_w d_w. \quad (13)$$

In contrast to [4, 6], expression (12) gives the wall force increases monotonically with γ , starting from $f_{r2}^{side} = 0$ at $\gamma = 0$ and maximal at $\gamma = \infty$. Using $\xi_{r,21} \xi_{r,VDE}^* = |\xi_{r,21} \xi_{r,VDE}| e^{i\delta_{21}}$ and $\gamma = \infty$, Eq. (12) after integration across the wall volume gives us the sideways force:

$$F_2^{id} = 4F_q \frac{r_{pl}^3}{r_w^3} \frac{(2-q_{pl})}{(1-\kappa_1^2)(1-\kappa_2^2)} \frac{|\xi_{r,21}\xi_{VDE}|}{r_{pl}^2}. \quad (14)$$

The result F_x^{21} described by Eqs. (11)–(12) in [6] at $\gamma=0$ and at $\gamma=\infty$ differs from one another in 1.33 times for chosen parameters in [6]. Comparing them with Eq. (14):

$$F_x^{21} = 2F_2^{id} (r_w^2/r_{pl}^2 - 1) \quad (15)$$

at $\gamma=\infty$. With $r_w/r_{pl}=2$ as in [6] we have $F_x^{21} = 6F_2^{id}$. This shows us that the result described by Eqs. (11)–(12) in [6] overestimates the wall force 6 times. Let us notice that comparison of F_x^{11} in Eqs. (13)–(14) in [6] with $F_{(43)}^S$ obtained after integration across the wall volume of Eq. (43) in [4] at $\gamma=\infty$ gives us

$$F_x^{11} = 2F_{(43)}^S r_w^3/r_{pl}^3. \quad (16)$$

At $r_w/r_{pl}=3$ as in [4], $F_x^{11} = 54F_{(43)}^S$ despite the statement made right before Eq. (13) in [6] that F_x^{11} and $F_{(43)}^S$ are the same.

In [2], equation $F_X^{Noll} \equiv 2F_{Xm}\xi_z/r_w$ was obtained. It gives a sideways force on the rigid ring with current J in the toroidal field B_{0z} when this ring is tilted about the axis X by a small angle $\alpha = \xi_z/R_0$ so that ξ_z is the amplitude of displacement. With ITER [8] parameters, mentioned in section 2, $F_X^{Noll} \geq 135$ MN requires $\xi_z/r_{pl} \geq 0.27$. At $q_{pl}=1.1$, $|\xi_{r,11}|/r_{pl} \geq 0.27$ and $|\xi_{r,21}\xi_{VDE}|/r_{pl}^2 \geq 0.073$ the sideways wall force $F_2^{ITER} \geq 40$ MN, while $F_1^{ITER} \geq 16$ MN calculated in [7]. Thus at q_{pl} near 1 the quadratic term F_2 of Eq. (4) dominates over linear, which $F_1 \rightarrow 0$ in this case.

5. Conclusion. In contrast to [4, 6], we have shown that the force is monotonically increasing with γr_w and maximal at $\gamma=\infty$. With the latter the sideways force F_2 produced by $m/n=2/1$ kink mode combined with a plasma vertical displacement can be larger than 48 MN that ITER is designed for [9] at $q_{pl} \rightarrow 1$ and $|\xi_{r,21}\xi_{VDE}|/r_{pl}^2 \geq 0.073$, while $F_1 \rightarrow 0$ [7].

- [1] V. Riccardo, P. Noll, and S. P. Walker, Nucl. Fusion **40**, 1805 (2000).
- [2] V. Riccardo, S. Walker, and P. Noll, Fusion Eng. Des. **47**, 389 (2000).
- [3] V. Riccardo and S. P. Walker, Plasma Phys. Controlled Fusion **42**, 29 (2000).
- [4] H. R. Strauss, R. Paccagnella and J. Breslau, Phys. Plasmas **17**, 082505 (2010).
- [5] L. E. Zakharov, S. A. Galkin and S. N. Gerasimov, Phys. Plasmas **19**, 055703
- [6] H. R. Strauss, et. al, Nucl. Fusion **53**, 073018 (2013).
- [7] D.V. Mironov and V.D. Pustovitov, Phys. Plasmas **22**, 052502 (2015).
- [8] T. C. Hender *et al.*, Nucl. Fusion **47**, S128 (2007).
- [9] V. Riccardo, *et al.*, Plasma Phys. Controlled Fusion **52**, 124018 (2010)
- [10] V. D. Pustovitov, Phys. Plasmas **19**, 062503 (2012).
- [11] V. D. Pustovitov, Plasma Phys. Rep. **38**, 697 (2012).