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1. Introduction. This task is related to evaluation of the electromagnetic forces on the 

conducting structures during plasma disruptions [1–7]. Such forces are observed on Joint 

European Torus (JET) [2] accompanying with the vertical displacement events (VDEs). In 

[6], an expression for the force produced by kink modes together with VDEs was derived 

using Eq. (43) from [4]. The latter is shown to be incorrect in [7]. This is a sufficient reason 

for revision of the predictions made in [6]. 

 Here we calculate the non-axisymmetric (sideways) wall force produced by kink modes 

combined with VDEs. We use a model described in [7], but extend it here by considering 

three modes and their nonlinear beating.  

2. Formulation of the problem. As in [4, 6, 7], we consider a cylindrical plasma with minor 

radius plr  surrounded by a coaxial resistive wall of uniform conductivity  , radius wr  and 

thickness wd . The plasma-wall gap and space behind the wall are treated as a vacuum. The 

magnetic field is described as bBB  0 , where 0B  is the axisymmetric equilibrium field 

( 0/0  tB ) and b  is the perturbation. The latter induces the eddy current Ej   in the 

wall, where E  is the electric field governed by t /bE . Then, a force with a volume 

density Bjf   will act on the wall. A lateral (sideways) force is defined by 

0 cos cosf eX X w w r
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F dV R r d f d d       ,                      (1) 

where eX  is the unit vector along a fixed horizontal direction, 0R  is the major radius,   and 

  are the poloidal and toroidal angles, respectively, and  
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In the quadratic term here, we disregarded a small contribution from b . Equation (1) shows 

that only cos cosrf    can give a non-zero sideways force. Therefore, 1 1m n   mode 

can contribute into linear term of Eq. (2). This case was discussed in [7]. In quadratic term, 
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we need 2 cos cosb   . This can be produced by the beating of m n  and 1 1m n   

modes. Here we consider the perturbations in form  

,11 11 , ,21 21cos( ) sin sin(2 )VDEb b b b                             (3) 

with 
11  and 

21  that are toroidal phase shifts of the modes. VDE denotes 1 0m n   mode. 

With such b  for ideal conducting wall, Eqs. (1)–(2) give a sideways force  

,11 ,21 ,
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 , b  and 0B   are taken at the wall, plq  is the safety factor 0 0 0/ ( )q rB R B   

at the plasma boundary, J  is the total current in the plasma. With ITER parameters [8]: 

15J  MA, 3.50 B  T, 2plr  m, / 1.3w plr r  , we have 325ITER

XmF   MN. A large plasma 

vertical displacement was observed on JET at 1.1plq   [9]. Using the latter and ITER data 

the term 1 37.5F   MN requires ,11 0/ 0.25b B   , while the ITER is designed for 48 MN [9]. 

However, this limit can be exceeded by the contribution from quadratic term of Eq. (4), 

which gives 2 22F   MN at 2

,21 , 0 0.25VDEb b B    . On the other hand, 0XF   at  
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A result similar to Eq. (4) is described by Eqs. (11)–(15) in [6]. These equations predict 

a force as a monotone decreasing function of 
w  with a maximum at 0   instead of 

1w   as claimed in [6] for parameters presented in [4], where   is the kink growth rate and 

w  is the wall penetration time. On the contrary, analysis in [7] shows that 1F  force must be 

maximal in the ideal wall limit at w .  Here we obtain the same result for 2F  and 

compare it with that in [6]. 

3. Calculation of the force. We calculate quadratic term of Eq. (2). At 0mRnr   equation 

2 0   with b   and  Re exp( )mn

mn

im in      gives us 
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                        (6) 
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in the plasma-wall vacuum gap with 
wx r r  and 2 out

m m mmB B    (see also [7,10, 11]). 

Then, 

, ,(1 / ) ( )mn m r mn win
b i m b r            and        

, , ( )mn r mn wout
b ib r   ,      (7) 

where , /r mn mnb r    is the amplitude of rb  and 
w w wr r d   . Using these expressions 

we introduce 
2 ,21 ,

inside

w r VDE out
d f b b  : 
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                          (8) 

that is a force volume density only contributes to sideways force in quadratic term with 
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   and     * *

1 2 2 12      ,              (9) 

where superscript * denotes a complex conjugate variables. 

 In [6], the force is finally expressed through the radial component r  of the plasma 

displacement ξ . To move in this direction we use the consequence of (6) 
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valid in the plasma-wall gap. If the plasma is ideal as in Ref. [4, 6, 7], we have 

)( 0Bξb  , rr ξb  0B  and  

, ,( ) ( )pl r mn pl J pl r mnr b r iB m nq ξ                    (11) 

with )(0 plJ rBB   and ,r mnξ  taken at the plasma boundary. Then, Eq. (8) takes a form of 
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,  (12) 

where  ( / )m

m pl wr r   and free parameters: 2  and   are defined by Eq. (9). 

4. Comparisons, estimates, and discussion. In [4, 6], a thin shell approximation was used 

that requires continuity of the normal component of b  (here, rb ) at the wall. Hence 

2 0   and m  is related to mn  by (see [10, 11] and the references therein) 

m mn w          with       w w wr d  .    (13) 

In contrast to [4, 6], expression (12) gives the wall force increases monotonically with  , 

starting from 2 0side

rf   at 0   and maximal at    . Using 21*

,21 , ,21 ,

i

r r VDE r r VDE e
     and 

   , Eq. (12) after integration across the wall volume gives us the sideways force:  
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The result 21

xF  described by Eqs. (11)–(12) in [6] at 0   and at     differs from 

one another in 1.33 times for chosen parameters in [6]. Comparing them with Eq. (14): 

21 2 2

22 ( 1)id

x w plF F r r                                                  (15) 

at    . With 2w plr r   as in [6] we have 21

26 id

xF F . This shows us that the result 

described by Eqs. (11)–(12) in [6] overestimates the wall force 6 times. Let us notice that 

comparison of 11

xF  in Eqs. (13)–(14) in [6] with (43)

SF  obtained after integration across the 

wall volume of Eq. (43) in [4] at     gives us 

11 3 3

(43)2 S

x w plF F r r  .                                              (16)  

At 3w plr r   as in [4], 11

(43)54 S

xF F  despite the statement made right before Eq. (13) in [6] 

that 11

xF  and (43)

SF  are the same. 

In [2], equation 2Noll

X Xm z wF F r was obtained. It gives a sideways force on the rigid 

ring with current J  in the toroidal field 0B  when this ring is tilted about the axis X  by a 

small angle 0/ Rz   so that z  is the amplitude of displacement. With ITER [8] 

parameters, mentioned in section 2, 135Noll

XF   MN requires 0.27z plr  . At 1.1plq  , 

,11 0.27r plr   and 2

,21 0.073r VDE plr    the sideways wall force 2 40ITERF   MN, while 

1 16ITERF   MN calculated in [7]. Thus at plq  near 1 the quadratic term 2F  of Eq. (4) 

dominates over linear, which 1 0F   in this case.  

5. Conclusion. In contrast to [4, 6], we have shown that the force is monotonically increasing 

with 
w  and maximal at    . With the latter the sideways force 2F  produced by 

2 1m n   kink mode combined with a plasma vertical displacement can be larger than 48 

MN that ITER is designed for [9] at 1plq   and 
2

,21 0.073r VDE plr   , while 1 0F   [7].  
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