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Introduction

The scrape-off layer in a tokamak fusion plasma is replete with coherent fluctuations in the

form of blobs or filaments [1, 2, 3, 4]. Radio frequency (RF) waves, excited by an external

antenna structure, have to propagate through this turbulent region on their way toward the core

of the plasma. Since the plasma permittivity inside the fluctuations is different compared to the

background plasma, the characteristic properties of the incident RF waves can change during

their transit through the fluctuations. It is common to study these changes using the geometric

optics approximation (see [5] and references therein). In this approximation, rays, representing

plane waves, are refracted due to changes in the plasma permittivity. The domain of validity of

this approximation is quite limited; it requires that δn≡ |n f −nb|/nb� 1 (n f is the density of

electrons inside the fluctuation and nb is the background density). However, from experimental

observations, typically, δn & 1 in the scrape-off layer. Consequently, a study of the scattering

process requires a more general approach that is not limited by the bounds of the geometric

optics approximation.

In this paper, we present a theoretical model for the scattering of RF waves by density fila-

ments using the full-wave Maxwell’s equations. The model is based on the conventional Mie

theory that is used for scattering of vacuum electromagnetic waves by spherical dielectrics [6].

Our model applies to magnetized plasmas for which the permittivity is given by a tensor, rather

than a scalar, and is derived from our previous study on the scattering of RF waves by spherical

blobs [7, 8]. The present model pertains to scattering off a cylindrical filament with its axis

aligned along the toroidal magnetic field line. It assumes that the background plasma, as well as

the plasma in the filament, is cold and has uniform density. However, it is not restricted to small

density fluctuations – δn is completely arbitrary. The theoretical framework applies to plasma

waves of any frequency; it is valid for ion cyclotron, lower hybrid, and electron cyclotron waves.

Beyond their respective domain of validity, there are three primary differences between the

full-wave theory and the geometric optics approximation. First, whereas geometric optics is

used for describing refractive changes in the ray propagation, the full-wave model also includes

reflection and diffraction. Second, in geometric optics, the character of the wave does not change

as the RF ray propagates through fluctuations. For example, an incident ordinary wave in the
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electron cyclotron range of frequencies will remain an ordinary wave during its encounter with

fluctuations. In the full-wave model, the fluctuations can couple power to other plasma waves.

Thus, for the example considered, the ordinary wave couples power to the extraordinary wave.

This is not nonlinear parametric coupling; it is linear coupling facilitated by the fluctuations.

Third, due to diffraction of waves by the filament, the scattered waves propagate in all radial

directions relative to the magnetic field line. Consequently, fluctuations can scatter some of the

incident wave power to surface waves which do not propagate into the core plasma. This effect

cannot be described within the geometric optics approximation.

Basic equations and boundary conditions
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Figure 1: Coordinate sys-

tem with respect to the

cylindrical filament

We assume that the axis of the cylindrical filament is aligned

along the magnetic field. The center of the coordinate system is

taken to be the center of the filament. The filament is assumed to

be stationary and of infinite extent in the axial direction. For a cold

fluid plasma, described by a linearized set of continuity and mo-

mentum equations for electrons and ions, Faraday’s and Ampere’s

equations in Maxwell’s system of equations can be combined [9]

to yield the following equation for the spatial variation of the elec-

tric field,

∇×∇×E(r)− ω2

c2

↔
K (r) .E(r) = 0, (1)

where ω is the angular frequency, c is the speed of light, and
↔
K (r) is the plasma permittivity

tensor. We have assumed that the plasma equilibrium is time independent, while the linearized

perturbed electromagnetic fields and the plasma density have a time dependence of the form

e−iωt . In the cylindrical coordinate system, in which the ambient magnetic field B0 = B0ẑ is

aligned along the z-axis [9],

↔
K =



Kρ −iKφ 0

iKφ Kρ 0

0 0 Kz


, (2)
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with

Kρ = 1 −
ω2

pe

ω2−ω2
ce
− ∑

ı

ω2
pi

ω2−ω2
ci
,

Kφ = −ωce

ω

ω2
pe

ω2−ω2
ce

+ ∑
ı

ωci

ω

ω2
pi

ω2−ω2
ci
, (3)

Kz = 1 −
ω2

pe

ω2 − ∑
ı

ω2
pi

ω2 ,

where ωpe (ωpi) and ωce (ωci) are the angular electron (ion) plasma frequency and cyclotron

frequency, respectively, and the index ı represents all the ion species in the plasma. The plasma

and cyclotron frequencies can, in general, be functions of space. The permittivity tensor of the

background plasma and of the filament are expressed in terms of their respective densities and

ion compositions.

A critical component in the description of full-wave scattering is that the electromagnetic

fields satisfy boundary conditions at the interface between the filament and the background

plasma. The boundary conditions which follow from Maxwell’s equations, with the requirement

that there be no free surface charges or currents at the interface, are

∆(r̂.B)r=a = 0, ∆(r̂.D)r=a ≡ ∆

(
r̂.
↔
K (r) .E

)
r=a

= 0, (4)

∆(r̂×E)r=a = 0, ∆(r̂×B)r=a = 0. (5)

Here B(r) is the wave magnetic field, D(r) is the displacement electric field, a is the radius

of the filament, and ∆ is the difference, at r = a, of the enclosed quantity evaluated inside the

filament and in the background plasma. Of these six scalar conditions, it can be shown that only

four are independent.

Results

Figure 2: The magnitude of the

total Poynting flux, normalized

to the Poynting flux of the inci-

dent wave, in the x− y plane.

In order to demonstrate the capability of the theoretical

model, we consider the scattering of the slow lower hybrid

wave [9] by a filament. The background plasma and the

plasma inside the filament has deuterium ions with electron

densities 2× 1019 cm−3 and 2.5× 1019 cm−3, respectively.

The ambient magnetic field is 4.5 T, and the incident plane

wave has a frequency of 4.6 GHz with a parallel refractive

index of 2. Figure 2 shows the magnitude of the Poynting

flux (normalized to the Poynting flux of the incident wave)

in the x−y plane. The incoming plane wave is incident from
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the left hand side and the cylindrical filament, outlined in white, has a radius of 0.01 m. The

pattern on the left hand side indicates a beating between the incident and the back-scattered

wave. The enhanced flux in the forward direction, near the boundary of the filament, is a con-

sequence of large electric and magnetic fields of the wave packet – a result of Gauss’ law. The

large amplitude fields can be the seeds for nonlinear parametric processes. The scattering in the

forward direction includes diffraction and shadowing due to the filament. The detailed wave

pattern emphasizes the point that the wave power propagating into the core of the plasma has a

more complicated structure than a plane wave. Indeed, a spectral analysis of the electric fields

in the forward direction points to a broadening of the wave vector spectrum along the magnetic

field line. The spectrum is centered around the wave number of the incident wave. The side scat-

tering of the lower hybrid wave is evident as there is power propagating in the y-direction. The

incident Poynting vector is in the x− z plane. For the parameters used to obtain Fig. 2, the fast

branch of the lower hybrid wave is evanescent in the background plasma. The slow branch is the

only propagating wave outside the filament. Inside the filament, both the slow and fast branches

of the lower hybrid wave are propagating. This affects the properties of the scattered waves due

to coupling, through the boundary conditions, inside the region separating the filament from the

background plasma.
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