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Linear conversion of the ordinary (O) wave to the extraordinary (X) wave plays an
important role in excitation of the electron Bernstein waves, which in turn provide an
effective way for high-frequency (electron cyclotron) heating and diagnostics of overdense
plasma in spherical tokamaks and optimized stellarators [1]. In spite of rather clear
theoretical background behind this process, exiting theory tends to overestimate efficiency
the O-X coupling in all available experiments. Following Laqua significant discrepancy
between the predicted and observed efficiencies is usually explained by turbulent
fluctuations of the cut-off layer where the mode conversion occurs [2]. However, only a
qualitative model based on essentially one-dimensional theory has been proposed, in which
poloidal fluctuations are taken into account by effective broadening of the incident wave
spectrum over the poloidal wave numbers. In the present paper we propose a more rigorous
approach based on two-dimensional theory of the mode conversion that can adequacy

describe fluctuations without any qualitative speculations.
1. Reference wave equations

Following [3], Maxwell equations in a region of the O-X wave coupling can be

reduced to

N, (i0/0x—0/0y)F, =2k, (e, -N?)F

' M
N, (0 /9x+9/0y)F, =2k, &,F,

Here k,=w/c, N, =k, /k, is the refractive index parallel to the magnetic field,
F,,=E_, exp(—ik,z+iar) are slow field amplitudes and & _, are the dielectric tensor
components in the Stix frame: & =1-@’, /@, &, =1- @, / ® (®+ @,,) . Effective coupling
occurs when r.h.s. of both equations goes to zero, i.e. £, € —N, — 0 (plasma cut-offs).
There are three spatial scales in the above equations: the density variation L, =n, /Vn,, the

magnetic field variation L, =B/VB , and the wave coupling length L, ~,/L /k, .

n
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Equations (1) have been obtained for a weakly inhomogeneous plasma, k,L,, k,L, >>1, so
in the tokamak conditions the coupling is highly localised, L, << L, <L,.

To study the effect of fluctuations we consider the simplest case in which
n,=(x/L)n, +,(x,y), B=(1+x/L,)B, z,, (2)

i.e. only density is perturbed, and without this perturbation the problem is reduced to
one-dimensional case. Note that x and y represent here the radial and poloidal directions

correspondingly, n,_, is the plasma cut-off density at which &£, =0. Having in mind that O-X

coupling occurs on scale L, shorter then all plasma inhomogeneity scales, we retain only

linear dependences over x in the magnetic field and the non-perturbed density. Then, the r.h.s.

of equations (1) may be simplified noting that
g <x'+8,+8,, € —N <x'+38,-6,, (3)

where x" = x/ L, 1is the normalized radial coordinate, and

on, L on, L L
) 8, = : , )
n, Ly 2n, Ly Ly(l+w/w,)-L,

represent the “symmetrical” and “asymmetrical” contributions of the density fluctuations.

Note that asymmetrical part appears due the regular variation of a magnetic field, and

therefore 0, << J, for large aspect ratio tokamaks while &, ~ §, for spherical tokamaks.
Study of wave equations (1) can be done after transformation to new field

variables F, o< A" + A™, F, < A" — A" introduced in such a way that in the WKB limit A"

and A~ are amplitudes of waves that propagate, respectively, in the positive and negative

directions along the radial coordinate:

{(i 0/ox"+x'+8.)A" =(=9/dy’+6,)A” )

((9/ox'—x'=8.)A" =(-9/dy’— 5, )A*

One can see that the r.h.s. of these equations describes the coupling between counter
propagating waves which is affected only by the asymmetrical part of the fluctuations.
Opposite to it, the symmetrical part does not disturb the wave coupling however can modify

propagation of the separate waves outside the coupling region. So even from a structure of
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wave equations we can argue that symmetric and asymmetric contributions of density

fluctuations act essentially different. Physically it may be understood as &, describes the

shift of the evanescent region, while 0, describes the fluctuation of its width, see figure 1.

Fig. 1. Schematic of the symmetric (left) and

asymmetric (right) contributions of density

fluctuations. Dashing shows the region where

studied electromagnetic modes are evanescent.

2. Coupling efficiency for plasma with harmonic fluctuations

Equations (5) were investigated in details in paper [3]; the main results of these
studies may be summarized as follows.

For radial harmonic fluctuation, o, , =a_, cos(x x"+¢), the problem is reduced to
the essentially one-dimensional case, d/ oy’ — iky , that may be treated in a standard Born
approximation. In for case of effective mode coupling, k, <<1, one can calculate the
transmission coefficient of incident plane wave averaged over a random phase ¢,

2z — 2
A" () > dp .,
T, =1- [ ¥ _ >
P I|A+(—o<>)|2 o

0

+im -7’k (a] +4alk] /1 K*)sin® (k° /4)+...(6)

For poloidal harmonic fluctuation, &, =a_, cos(ky’+¢), the symmetric

contribution (a, ) results in coupling of co-propagating harmonics, so one can neglect the

reflection (take the r.h.s. of Eq.(5) equal to zero). In this case an exact analytic solution may
be obtained, that describes the slow modification of the poloidal spectrum of an incident
beam as it approaches the plasma cut-off. This is actually well-known diffusion in k-space
induced by fluctuations [4]. It is important to note, that this effect is collected on a much
longer path than the localized reflection region where the incident wave couples with a
counter-propagating wave. Inside this zone, the symmetric contribution is of minor
importance for all meaningful parameters being investigated. The asymmetric contribution

(a,) couples counter-propagating harmonics close to the plasma cut-off. The phase-averaged

transmission coefficient for the plane wave with k =0 may be estimated as

T,, ~expl[-+7x(1+7x?)"al]. (7



4274 EPS Conference on Plasma Physics P5.408

3. Discussion

Basing on the developed theory we revise the role of fluctuations in the OXB
experiment. Note that our definitions of fluctuation parameters (4) contain product of small

and large terms. As a result, in a fusion experiment the symmetric contribution d, may be of

order of unity even though the relative density perturbations are small. Nevertheless, study of
the typical parameter space shows that the impact of symmetric contribution of both radial
and poloidal fluctuations on the O-X coupling remains small even for unrealistically large

fluctuation level (87 ~1% for on, /n, ~ 20% ). However, poloidal fluctuations can modify

the amplitude and phase distributions in the incident quasi-optical beam far outside the
coupling region located near the cut-off layer, what affect the consequent mode-conversion

process (87 ~10% for the path 10 cm and dn, /n, ~ 2% ). The asymmetric contribution

resulted from a magnetic field inhomogeneity typically can be neglected in large aspect ratio

devices but not in compact tori since 6, /0, ~ L,/ L, ~ a/R. Therefore, in a conventional

tokamak fluctuations result only in distortion of a wave beam on its way towards the mode
coupling region but have no influence on the efficiency of the mode interaction inside the

coupling region. In a spherical tokamak with J, ~ §, the asymmetrical part of density

perturbations may be significant inside the coupling region resulting in degradation the
transmission efficiency by up to 25% for realistic conditions.

Summarizing, we find that plasma fluctuations can not be fully responsible for the
low efficiency of OXB heating of overdense plasma observed in present-day experiments.
We guess that the main factor impeding the tunneling of the electromagnetic waves through
the plasma cut-off in these experiments may be associated with a curvature of toroidal

magnetic surfaces [5].
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