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Effect of bremsstrahlung emission on fast electrons in plasmas
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Background Bremsstrahlung radiation is one of the most important energy loss mech-
anisms for fast electrons in plasmas. At a few tens of MeV, the energy loss associated with
the emission of bremsstrahlung radiation can dominate the collisional energy loss [1,2].
An important electron acceleration process, producing energetic electrons in both space
and laboratory plasmas, is the runaway mechanism. In the presence of an electric field
which exceeds the minimum to overcome collisional friction, a fraction of the charged par-
ticles can be accelerated to relativistic energies, where radiative losses become important.
Previous studies of laboratory plasmas [3] and lightning discharges [4] have shown that
the energy lost by bremsstrahlung is important in limiting the energy of runaway elec-
trons. However, only the average bremsstrahlung friction force on test particles has been
considered in these studies. In this contribution, we present the first quantitative kinetic
study of how bremsstrahlung emission affects the runaway-electron distribution function.
Starting from the Boltzmann electron transport equation, we derive a collision operator
representing bremsstrahlung radiation reaction, fully accounting for the finite energies
and emission angles of the emitted photons [5]. We find significant differences in the
distribution function when bremsstrahlung losses are modeled with a Boltzmann equation
(referred to as the “Boltzmann” or “full” bremsstrahlung model), compared to the model
where only the average friction force is accounted for (the “mean-force” model). In the
former model, the maximum energy reached by the energetic electrons is significantly
higher than is predicted by the latter. In previous treatments which considered isotropic
plasmas [2] or average energy loss [3,4], the emission of soft (low-energy) photons did not
influence the electron motion. We show that in the general case, emission of soft photons

contributes significantly to angular deflection of the electron trajectories.

Formulation We treat bremsstrahlung as a binary interaction (“collision”) between
two charged particles, resulting in the emission of a photon. The effect of such a pro-
cess on the electron distribution function f,, due to interactions with another species
b, is described by a Boltzmann collision operator Cg,gb{ fe, fo} = (dne)cep/dtdp, where the
differential change (dne)cp in the phase-space density due to collisions in a time inter-

val dr is given by(dne)qeb = f2(p1)f»(P2)8sdGepdprdpadt — f,(p) f5(p')gsdo.,dpdp’ds. Here,

do,, =do,,(p1, p2, k; p, p’) is the differential cross-section for a particle a of momentum p
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and a particle b of momentum p’ to be taken to momentum p; and p;, respectively, while

emitting a photon of momentum k/c. We have also introduced the Mgller relative speed

g0 =/ (Vv—¥)2—(vxV)2/c2. The barred quantities d6 and g, are defined likewise, but
with (p, p’) and (p1, p2) exchanged. Here, we consider only the contribution from spon-
taneous emission, however the contribution from absorption and stimulated emission [6]
can be important in large systems where a significant background radiation is present.

The bremsstrahlung collision operator takes a particularly simple form when considering
a cylindrically symmetric distribution function interacting with stationary targets. This
is well motivated for runaway electrons in a magnetized plasma, which interact primarily
with the bulk plasma which is near local thermal equilibrium. In terms of a decompo-
sition in Legendre polynomials Pr, writing A(p, &) = Y AL(p)PL(E) for any function A
of momentum coordinates p = (p, &, @) in a spherical coordinate system where £ is the
pitch-angle cosine, the bremsstrahlung collision operator takes the form

c ! 96,

eBb,L(P)an/dPl {P%\’lfL(Pl)27?/_1d0059sPL(C059s) 8pb —mpvfL(p)Oes(p). (1)

where 0,5 = [dp; (d0,,/dp1) is the total cross-section. The integration limit in p; is deter-

mined by the conservation of energy in the collision, which gives mec+/ (Y + ko /mec?)? — 1 <
p1 < oo, where Y= +/1+ p?/m2c? is the Lorentz factor, and k is the photon energy.

The contribution from photon energies k < kg, for some cut-off kg < m.c?(y—1), needs to
be treated with extra care, as the collision integral is logarithmically divergent: For small
k, d6,,/0p < 1/k. The energy carried away by the photon energy can be neglected in
this contribution to the collision operator. This yields a simpler, elastic, collision operator

which describes those interaction, taking the form

1 ko

do,
C = —nyv fi (p) / deose, [I—PL(COSOS)] /k k5
_ . A

C

(2)

This operator needs to be cut off at a photon energy k. < kg, which due to dielectric
suppression takes the value k. ~ hw), [7]. This term describes bremsstrahlung-induced
pitch-angle scattering which, due to the logarithmic divergence in k, is enhanced relative
to the k > ko part of the bremsstrahlung operator by a “bremsstrahlung logarithm” InApg =
Inko /ke.

In our calculations, we will use the differential cross-section do/dp in the first Born
approximation, first derived by Racah [8]. The rate of pitch-angle scattering from (2)
can then be compared to the contribution from elastic Coulomb scattering, and the ratio

between the L =1 terms (the transport cross-section) of the two is analytically given by
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Figure 1: Comparison of the Boltzmann and mean-force bremsstrahlung models. (a), (b) 2D
distribution functions (contours of log,o[f(m.c)?/n.)); (c) fraction of plasma kinetic energy car-

ried by electrons more energetic than W = m.c?(y—1); (d) angle-averaged distribution functions.

cymall-k joCoulomb — /(9 /) (InAg/ In A){[In(2p/mec) — 1]> 4 1}, where a ~ 1/137 is the
fine-structure constant. The bremsstrahlung pitch-angle scattering thus increases in im-
portance with electron energy: at the 10MeV scale it typically represents a 10% modifi-

cation, while at 10GeV energies it equals the elastic pitch-angle scattering rate.

Results We shall determine the effect of bremsstrahlung losses on the steady-state run-
away distribution. The situation of primary interest is when the electric field is stronger
than (but comparable to) the critical field, E > E. = moc/et., and we consider the quasi
steady-state distribution which is set up over times longer than the relativistic colli-
sion time, ¢ > 7, = 4weim2c? /(n.InAe*), where 7, ~20ms at n, = 10> m~3. We use the
Fokker-Planck solver CODE [9,10] to solve the kinetic equation, accounting for acceler-
ation by an electric field, elastic Coulomb collisions and radiation losses. We will com-
pare the Boltzmann model with the mean-force model, where bremsstrahlung losses are
modeled as a continuous slowing-down force, given by the stopping-power formula Fp =
—PYsms [y e (r=1) dkkdo,,/dk [1], the sum taken over all particle species in the plasma.

The results are summarized in Fig. 1. We use parameters representing a tokamak dis-
ruption scenario with massive gas injection, with electron density n, = 3-10*! m—3, plasma
effective charge Z.g = 10 and electric field E = 2E.. The distribution functions are shown
in (a), (b) and (d), demonstrating large qualitative differences between the mean-force
and Boltzmann models. Both models show that radiation losses will limit the maximum

electron energy, but the Boltzmann model predicts a significantly wider distribution of
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energies. Synchrotron radiation reaction losses, associated with the gyromotion of elec-
trons in a straight magnetic field, has also been shown to be an important energy-loss
mechanism [11-14]. Figure 1(b) shows that, in conjunction with bremsstrahlung losses,
synchrotron losses (modeled as in Ref. [13]) shifts the distribution towards lower energies
but does not change its qualitative features. In addition, the low-energy photon emissions
described by Eq. (2) cause a wider pitch-angle distribution, which can be seen in (a)
and (b) where the black contours extend further in the perpendicular direction. Figure
1(c) shows the fraction of plasma kinetic energy carried by electrons more energetic than
W = m,c?(y— 1), normalized to the kinetic energy Wy which solves the force-balance equa-
tion Fg(W) = eE — eE,. The filled regions represent the values spanned as Z.g is varied
between 1 and 35, and (E/E. —1)/(1 4 Zeg) between 0.05 and 0.25. From the figure we
see that a significant fraction of energy, of order 5%, is carried by electrons with kinetic
energy more than twice that which the mean-force model predicts. This result is very
robust, with the same behavior being observed for a large range of electric fields and
effective charges. In terms of the normalized units shown in figure 1(c), the behavior is
independent of plasma density, except for a weak logarithmic dependence in the Coulomb
logarithm. The behavior we have observed here may therefore apply to a wide range of
plasmas where bremsstrahlung losses are important.
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