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Background Bremsstrahlung radiation is one of the most important energy loss mech-

anisms for fast electrons in plasmas. At a few tens of MeV, the energy loss associated with

the emission of bremsstrahlung radiation can dominate the collisional energy loss [1, 2].

An important electron acceleration process, producing energetic electrons in both space

and laboratory plasmas, is the runaway mechanism. In the presence of an electric field

which exceeds the minimum to overcome collisional friction, a fraction of the charged par-

ticles can be accelerated to relativistic energies, where radiative losses become important.

Previous studies of laboratory plasmas [3] and lightning discharges [4] have shown that

the energy lost by bremsstrahlung is important in limiting the energy of runaway elec-

trons. However, only the average bremsstrahlung friction force on test particles has been

considered in these studies. In this contribution, we present the first quantitative kinetic

study of how bremsstrahlung emission affects the runaway-electron distribution function.

Starting from the Boltzmann electron transport equation, we derive a collision operator

representing bremsstrahlung radiation reaction, fully accounting for the finite energies

and emission angles of the emitted photons [5]. We find significant differences in the

distribution function when bremsstrahlung losses are modeled with a Boltzmann equation

(referred to as the “Boltzmann” or “full” bremsstrahlung model), compared to the model

where only the average friction force is accounted for (the “mean-force” model). In the

former model, the maximum energy reached by the energetic electrons is significantly

higher than is predicted by the latter. In previous treatments which considered isotropic

plasmas [2] or average energy loss [3,4], the emission of soft (low-energy) photons did not

influence the electron motion. We show that in the general case, emission of soft photons

contributes significantly to angular deflection of the electron trajectories.

Formulation We treat bremsstrahlung as a binary interaction (“collision”) between

two charged particles, resulting in the emission of a photon. The effect of such a pro-

cess on the electron distribution function fe, due to interactions with another species

b, is described by a Boltzmann collision operator CB
eb{ fe, fb} = (dne)c,eb/dtdp, where the

differential change (dne)c,eb in the phase-space density due to collisions in a time inter-

val dt is given by
(
dne
)

c,eb = fa(p1) fb(p2)ḡødσ̄ebdp1dp2dt− fa(p) fb(p′)gødσebdpdp′dt. Here,

dσeb = dσeb(p1, p2, k; p, p′) is the differential cross-section for a particle a of momentum p
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and a particle b of momentum p′ to be taken to momentum p1 and p2, respectively, while

emitting a photon of momentum k/c. We have also introduced the Møller relative speed

gø =
√

(v−v′)2− (v×v′)2/c2. The barred quantities dσ̄ and ḡø are defined likewise, but

with (p, p′) and (p1, p2) exchanged. Here, we consider only the contribution from spon-

taneous emission, however the contribution from absorption and stimulated emission [6]

can be important in large systems where a significant background radiation is present.

The bremsstrahlung collision operator takes a particularly simple form when considering

a cylindrically symmetric distribution function interacting with stationary targets. This

is well motivated for runaway electrons in a magnetized plasma, which interact primarily

with the bulk plasma which is near local thermal equilibrium. In terms of a decompo-

sition in Legendre polynomials PL, writing A(p, ξ ) = ∑L AL(p)PL(ξ ) for any function A

of momentum coordinates p = (p, ξ , ϕ) in a spherical coordinate system where ξ is the

pitch-angle cosine, the bremsstrahlung collision operator takes the form

CB
eb,L(p) = nb

ˆ
dp1

[
p2

1v1 fL(p1)2π

ˆ 1

−1
dcosθs PL(cosθs)

∂ σ̄eb

∂p

]
−nbv fL(p)σeb(p). (1)

where σeb =
´

dp1 (∂σeb/∂p1) is the total cross-section. The integration limit in p1 is deter-

mined by the conservation of energy in the collision, which gives mec
√

(γ + k0/mec2)2−1<

p1 < ∞, where γ =
√

1 + p2/m2
ec2 is the Lorentz factor, and k is the photon energy.

The contribution from photon energies k < k0, for some cut-off k0�mec2(γ−1), needs to

be treated with extra care, as the collision integral is logarithmically divergent: For small

k, ∂ σ̄eb/∂p ∝ 1/k. The energy carried away by the photon energy can be neglected in

this contribution to the collision operator. This yields a simpler, elastic, collision operator

which describes those interaction, taking the form

C small-k
eb,L =−nbv fL(p)

ˆ 1

−1
dcosθs

[
1−PL(cosθs)

]ˆ k0

kc

dk
∂σeb

∂k∂ cosθs
. (2)

This operator needs to be cut off at a photon energy kc < k0, which due to dielectric

suppression takes the value kc ∼ h̄ωp [7]. This term describes bremsstrahlung-induced

pitch-angle scattering which, due to the logarithmic divergence in k, is enhanced relative

to the k > k0 part of the bremsstrahlung operator by a“bremsstrahlung logarithm” lnΛB =

lnk0/kc.

In our calculations, we will use the differential cross-section ∂σ/∂p in the first Born

approximation, first derived by Racah [8]. The rate of pitch-angle scattering from (2)

can then be compared to the contribution from elastic Coulomb scattering, and the ratio

between the L = 1 terms (the transport cross-section) of the two is analytically given by
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Figure 1: Comparison of the Boltzmann and mean-force bremsstrahlung models. (a), (b) 2D

distribution functions (contours of log10[ f (mec)3/ne]); (c) fraction of plasma kinetic energy car-

ried by electrons more energetic than W = mec2(γ−1); (d) angle-averaged distribution functions.

Csmall-k
1 /CCoulomb

1 = α(2/π)(lnΛB/ lnΛ){[ln(2p/mec)− 1]2 + 1}, where α ≈ 1/137 is the

fine-structure constant. The bremsstrahlung pitch-angle scattering thus increases in im-

portance with electron energy: at the 10MeV scale it typically represents a 10% modifi-

cation, while at 10GeV energies it equals the elastic pitch-angle scattering rate.

Results We shall determine the effect of bremsstrahlung losses on the steady-state run-

away distribution. The situation of primary interest is when the electric field is stronger

than (but comparable to) the critical field, E > Ec = mec/eτc, and we consider the quasi

steady-state distribution which is set up over times longer than the relativistic colli-

sion time, t � τc = 4πε2
0 m2

ec3/(ne lnΛe4), where τc ∼ 20ms at ne = 1021 m−3. We use the

Fokker-Planck solver CODE [9, 10] to solve the kinetic equation, accounting for acceler-

ation by an electric field, elastic Coulomb collisions and radiation losses. We will com-

pare the Boltzmann model with the mean-force model, where bremsstrahlung losses are

modeled as a continuous slowing-down force, given by the stopping-power formula FB =

−p̂∑b nb
´ mec2(γ−1)

0 dk k∂σeb/∂k [1], the sum taken over all particle species in the plasma.

The results are summarized in Fig. 1. We use parameters representing a tokamak dis-

ruption scenario with massive gas injection, with electron density ne = 3 ·1021 m−3, plasma

effective charge Zeff = 10 and electric field E = 2Ec. The distribution functions are shown

in (a), (b) and (d), demonstrating large qualitative differences between the mean-force

and Boltzmann models. Both models show that radiation losses will limit the maximum

electron energy, but the Boltzmann model predicts a significantly wider distribution of
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energies. Synchrotron radiation reaction losses, associated with the gyromotion of elec-

trons in a straight magnetic field, has also been shown to be an important energy-loss

mechanism [11–14]. Figure 1(b) shows that, in conjunction with bremsstrahlung losses,

synchrotron losses (modeled as in Ref. [13]) shifts the distribution towards lower energies

but does not change its qualitative features. In addition, the low-energy photon emissions

described by Eq. (2) cause a wider pitch-angle distribution, which can be seen in (a)

and (b) where the black contours extend further in the perpendicular direction. Figure

1(c) shows the fraction of plasma kinetic energy carried by electrons more energetic than

W = mec2(γ−1), normalized to the kinetic energy W0 which solves the force-balance equa-

tion FB(W ) = eE − eEc. The filled regions represent the values spanned as Zeff is varied

between 1 and 35, and (E/Ec− 1)/(1 + Zeff) between 0.05 and 0.25. From the figure we

see that a significant fraction of energy, of order 5%, is carried by electrons with kinetic

energy more than twice that which the mean-force model predicts. This result is very

robust, with the same behavior being observed for a large range of electric fields and

effective charges. In terms of the normalized units shown in figure 1(c), the behavior is

independent of plasma density, except for a weak logarithmic dependence in the Coulomb

logarithm. The behavior we have observed here may therefore apply to a wide range of

plasmas where bremsstrahlung losses are important.
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R. Sánchez, Phys. Plasmas 14, 072503 (2007).

[4] A. V. Gurevich and K. P. Zybin, Sov. Phys. Usp. 44, 1119 (2001).
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