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Abstract

The development of MHD stability theory of laboratory antt@ghysical plasmas with
sizeable background flows, initiated long ago, has sevexdfgred from the wide spread
misunderstanding that this theory necessarily involvesseif-adjoint operators. The new
theory ofthe Spectral Webon the contrary, is entirely constructed on the basis of the
two quadratic forms of the potential energy and the aver&ymupler—Coriolis shift, both
involving a self-adjoint operator. This approach finallypyides order in the bewildering
variety of complex eigenvalues that are obtained from hégolution spectral codes. This
order obtains from a monotonicity property of the eigengalin the complex plane along
the two sets of curves that constitute the spectral web. Symioperty was long thought
to be restricted to the real eigenfunctions of static eloidi but it has now been general-
ized for the complex eigenfunctions of stationary equigibhe monotonicity can not be
based on node counting of the eigenfunctions, but it iln@kleguantity calledhe comple-
mentary energyhich represents the energy needed to sustain the Dopigch€ shifted
oscillations of the instabilities. Thus, the full complegxestrum of stationary plasmas is
obtained together with a connecting structure. This pertoitonsider the enormous diver-
sity of MHD instabilities of laboratory and astrophysicahgmas with arbitrary flow and
rotation profiles from a single unifying viewpoint. The methis illustrated with old and
new instabilities of a force free field equilibrium subjette shear flow.

1. The Spectral Web method

Spectral theory of magnetohydrodynamic (MHD) waves anthbibties of magnetized plas-
mas has mainly been developed for static equilibria. Fomgi@, most "intuition” on tokamak
stability derives from the energy principle for static ptess, which has been the standard sta-
bility paradigm for over half a century [1]. However, mosapias in magnetic fusion devices
have substantial flows, and in astrophysics the paradigmlgimakes no sense because there
are no static plasmas in the Universe. The required modditdor stationary equilibria has
been known since the appearance of the seminal paper bydfriand Rotenberg [2] in 1960,
but, unfortunately, further development of spectral tigegdong this line has been hampered by
the general misunderstanding that this theory necessawbjves non-self-adjoint operators.
The new approach, exploiting what will be called tBpectral Webis based on the opposite
observation, viz. that the Frieman—Rotenberg spectradtemu

G(&) — 200U & +paPE =0, (1)

is a non-linear eigenvalue problem involvibgo self-adjoint operatorsyiz. the generalized
force operato and the Doppler—Coriolis operatdr= —ivg - [1. With these operators two real
guadratic forms may be associated, viz. the solution aesrafthe potential energy/ and of
the Doppler—Coriolis shift/ of the perturbations. For eigenvalues= Re(w) = V.
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The usual proof of self-adjointness of the force operatanaslified by exploiting, for ar-
bitrary values ofw, the left solutionfé of EQ. (1) that satisfies the BCs on axis and the right
solutioné" that satisfies the BCs at the wall. The two solutions are gbimesome surface S
inside the plasma. At that surface, the surface endtgy, is constructed,

Weom= — / & IN(E)]dS, 2)

where the normal componeé&t is made continuous and the jurfid (£ )] of the total pressure
perturbation does not vanish, in general. Tbisnplementary energsepresents the amount
of energy to be injected or extractedSiip obtain exponential time behavior éxgwt). Self-
adjointness implies th&Y;,m vanishes, which is the case for eigenvalues. Instead, iBybetral
Web method, the real and imaginary partsgt, are contour plotted to obtain two sets of
curves in the complegw-plane on which one of the two vanishes:

ImWeom(w)] =0 = solution path ReWeom(w)] =0 = conjugate path  (3)

The eigenvalues are located at the intersections of theseuvwes. Thus, for the first time,

the general eigenvalue problem of stationary equilibriadlved by an intuitive method that
not only provides the complex eigenvalues of the instaédjtbut also connects them with
physically meaningful curves. The method is applied to tigabilities of a straight cylinder,

for which the reduction of the Frieman—Rotenberg equatigns(well documented [3, 4]. The

Spectral Web method is not restricted to cylindrical praidehough since reduction to ordinary
differential equations in the normal direction & andl1 also obtains for toroidal problems
where the tangential dependences are taken care of by asepaduction. The present form
of the method is a complete revision of earlier papers onubgest [5].

2. An example: Instabilities of a force-free magnetic field

As an example illustrating the method of the Spectral Webghaose the classical problem
of the stability of a force-free field (FFF) in cylindrical gmetry. The equilibrium is given by
the well-known Bessel function model with constant ratidetween the current density and
the magnetic field. This problem first arose in astrophysicatext [6]. The stability analysis of
this configuration requires careful study of the rationafaze singularities according to New-
comb’s theorems [7]. That analysis was carried out by VobEmand Callebaut [8], whereas
the corresponding eigenfunctions and growth rates weileded by Goedbloed and Hage-
beuk [9]. The problem of the stability of force-free magodields of constantr is important
for the mechanism of relaxation and magnetic reconnectiGh s applied to reversed field
pinches [11], spheromaks [12], but also magnetic strusturéhe solar corona [13].

Instability with respect to ideal internal kink modes obtaffor sufficient current density,
aa > 3.175. The fastest growing eigenmodes then exhibit one labe 1) in the radial co-
ordinate. Increasing the value af, an increasing number of eigenmodes (with an increasing
numbem of lobes) would become unstable, if it were not for Newconfibregdlamental stability
theorem which dictates that the stability of a plasma witioreal surfaces should be investi-
gated as if it consisted of independent nested sub-domainsded by the rational surfaces.
This corresponds to increased stability, due to the szhgiinfluence of surface currents flow-
ing at the rational surfaces. This stabilization mechardéssappears for resistive plasmas, so
that the highen modes are resistively unstable. For example gfar> 6.843, then = 1 mode
is an unstable ideal internal kink mode (with approximat®ystant amplitude in each inde-
pendent sub-interval in between the rational surfacestapidlly varying across, see Fig. 5 of
Ref. [9]), whereas tha = 2 mode is ideally stable, but unstable with respect to tgarin
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In Fig. 1 the spectral web is 0.2
shown for the internal kink mode
of a FFF equilibrium subjected o0.15
to a constant flow in the longi-
tudinal direction, a trivial change 0.1
with respect to the static equilib-
rium. The solution path is just a .05 ﬁ* — wz:fjgg
straight line parallel to the imag- NN continua
inary axis, and the mode has the ¢ .o
same growth rate as in the static 0
case, but it obtains a finite real 0s- g o5 _
cillation frequency (the Doppler
shift). The value ofa is chosen
such that there are two rational
surfaces in the plasma. The ef- ; 5
fect of shear flowonto the spec-
tral web is shown in Fig. 2: A 4, /| 1 1 1
second branch of the solution 0.2 -0.0 0.2 0.4 0.6 0.8 1.0
path appears with a faster grow-
ing mode on it (labeledy): the _ _
n = 2 tearing mode has becomé:'g”re 1:Spectral Web for the @ 1, k= 1.28internal kink mode
ideally unstable! Moreover, a tinyof a FFF of constantr = 8.0, subjected to a constant Doppler

structure of in.tersecting solutionypift, ky, — 0.4. Eigenvalues (black dots) are located at the inter-
path and conjugate path curves

appears with modes labeleh, sections of the solution path (red) and the conjugate paltiejb
Go, ... on it (further illustrated in

the inset). These modes result from the extrema of the aomimspectra (plotted versysr /a

in the upper part of the figure). Those extrema would givetosgtable Global Alfvén Eigen-
modes (GAESs) on a small sub-interval about the extremalyriadal modes then), but on the
full interval they become unstable with a global eigenfiorct We will call them Flow-driven
Global Alfvén Eigenmode (FGAE) instabilities. There is afinity of them.

In summary: the Spectral Web method has revealed, in a veegtdand intuitive way, the
existence of new modes: a flow-drivan= 2 internal kink mode, with localizatioautsidethe
first singularity, and a class of infinitely many FGAEs witleddization across the whole plasma
but with rapid oscillations at the extrema of the continua.

3. Conclusions

e The Spectral Web is a powerful new tool producing the corapletnplex spectrum of
instabilities of plasma equilibria with flow.

e The break-up in inner/outer plasma regions is optimal fa thcorporation of external
modes, fast particle effects, control of instabilities FydXcitation, etc.

e The example of a FFF illustrates how shear flow turns tearirgles into ideal internal
kink modes, and induces Flow-driven Global Alfvén Eigerer(@@GAE) instabilities.

e Many more examples have been computed (interchangesivesisll modes, Rayleigh—
Taylor, magneto-rotational instabilities, etc.): to bepmrted elsewhere.
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Figure 2:Spectral Web for the different modes of the same force-femmatic field configuration as in
Fig.1, but subjected to shear flow,+ 0.9(1—r?). Two internal kink modes(land k) and an infinity of
FGAEs (G, Gy, ...) are indicated in the inset. The upper part of the figudi¢ates the radial profiles
of the Doppler shifQy and of the Doppler shifted Alfvén and slow contirﬂﬁ and Q§.
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