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Abstract

The development of MHD stability theory of laboratory and astrophysical plasmas with
sizeable background flows, initiated long ago, has severelysuffered from the wide spread
misunderstanding that this theory necessarily involves non-self-adjoint operators. The new
theory of the Spectral Web,on the contrary, is entirely constructed on the basis of the
two quadratic forms of the potential energy and the averagedDoppler–Coriolis shift, both
involving a self-adjoint operator. This approach finally provides order in the bewildering
variety of complex eigenvalues that are obtained from high resolution spectral codes. This
order obtains from a monotonicity property of the eigenvalues in the complex plane along
the two sets of curves that constitute the spectral web. Sucha property was long thought
to be restricted to the real eigenfunctions of static equilibria, but it has now been general-
ized for the complex eigenfunctions of stationary equilibria. The monotonicity can not be
based on node counting of the eigenfunctions, but it involves a quantity calledthe comple-
mentary energywhich represents the energy needed to sustain the Doppler–Coriolis shifted
oscillations of the instabilities. Thus, the full complex spectrum of stationary plasmas is
obtained together with a connecting structure. This permits to consider the enormous diver-
sity of MHD instabilities of laboratory and astrophysical plasmas with arbitrary flow and
rotation profiles from a single unifying viewpoint. The method is illustrated with old and
new instabilities of a force free field equilibrium subjected to shear flow.

1. The Spectral Web method
Spectral theory of magnetohydrodynamic (MHD) waves and instabilities of magnetized plas-

mas has mainly been developed for static equilibria. For example, most "intuition" on tokamak
stability derives from the energy principle for static plasmas, which has been the standard sta-
bility paradigm for over half a century [1]. However, most plasmas in magnetic fusion devices
have substantial flows, and in astrophysics the paradigm simply makes no sense because there
are no static plasmas in the Universe. The required modification for stationary equilibria has
been known since the appearance of the seminal paper by Frieman and Rotenberg [2] in 1960,
but, unfortunately, further development of spectral theory along this line has been hampered by
the general misunderstanding that this theory necessarilyinvolves non-self-adjoint operators.
The new approach, exploiting what will be called theSpectral Web, is based on the opposite
observation, viz. that the Frieman–Rotenberg spectral equation,

G(ξ )−2ρωUξ +ρω2ξ = 0, (1)

is a non-linear eigenvalue problem involvingtwo self-adjoint operators,viz. the generalized
force operatorG and the Doppler–Coriolis operatorU ≡−iv0 ·∇. With these operators two real
quadratic forms may be associated, viz. the solution averages of the potential energyW and of
the Doppler–Coriolis shiftV of the perturbations. For eigenvalues,σ ≡ Re(ω) = V.
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The usual proof of self-adjointness of the force operator ismodified by exploiting, for ar-
bitrary values ofω, the left solutionξ ℓ of Eq. (1) that satisfies the BCs on axis and the right
solutionξ r that satisfies the BCs at the wall. The two solutions are joined at some surface S
inside the plasma. At that surface, the surface energyWcom is constructed,

Wcom = −1
2

∫
ξ ∗

n [[Π(ξ)]]dS, (2)

where the normal componentξn is made continuous and the jump[[Π(ξ)]] of the total pressure
perturbation does not vanish, in general. Thiscomplementary energyrepresents the amount
of energy to be injected or extracted atS to obtain exponential time behavior exp(−iωt). Self-
adjointness implies thatWcomvanishes, which is the case for eigenvalues. Instead, in theSpectral
Web method, the real and imaginary parts ofWcom are contour plotted to obtain two sets of
curves in the complexω-plane on which one of the two vanishes:

Im[Wcom(ω)] = 0 ⇒ solution path, Re[Wcom(ω)] = 0 ⇒ conjugate path. (3)

The eigenvalues are located at the intersections of these two curves. Thus, for the first time,
the general eigenvalue problem of stationary equilibria issolved by an intuitive method that
not only provides the complex eigenvalues of the instabilities, but also connects them with
physically meaningful curves. The method is applied to the instabilities of a straight cylinder,
for which the reduction of the Frieman–Rotenberg equation (1) is well documented [3, 4]. The
Spectral Web method is not restricted to cylindrical problems though since reduction to ordinary
differential equations in the normal direction forξn andΠ also obtains for toroidal problems
where the tangential dependences are taken care of by a separate reduction. The present form
of the method is a complete revision of earlier papers on the subject [5].

2. An example: Instabilities of a force-free magnetic field
As an example illustrating the method of the Spectral Web, wechoose the classical problem

of the stability of a force-free field (FFF) in cylindrical geometry. The equilibrium is given by
the well-known Bessel function model with constant ratioα between the current density and
the magnetic field. This problem first arose in astrophysicalcontext [6]. The stability analysis of
this configuration requires careful study of the rational surface singularities according to New-
comb’s theorems [7]. That analysis was carried out by Voslamber and Callebaut [8], whereas
the corresponding eigenfunctions and growth rates were calculated by Goedbloed and Hage-
beuk [9]. The problem of the stability of force-free magnetic fields of constantα is important
for the mechanism of relaxation and magnetic reconnection [10], as applied to reversed field
pinches [11], spheromaks [12], but also magnetic structures in the solar corona [13].

Instability with respect to ideal internal kink modes obtains for sufficient current density,
αa ≥ 3.175. The fastest growing eigenmodes then exhibit one lobe (n = 1) in the radial co-
ordinate. Increasing the value ofα, an increasing number of eigenmodes (with an increasing
numbern of lobes) would become unstable, if it were not for Newcomb’sfundamental stability
theorem which dictates that the stability of a plasma with rational surfaces should be investi-
gated as if it consisted of independent nested sub-domains bounded by the rational surfaces.
This corresponds to increased stability, due to the stabilizing influence of surface currents flow-
ing at the rational surfaces. This stabilization mechanismdisappears for resistive plasmas, so
that the highern modes are resistively unstable. For example, forαa≥ 6.843, then = 1 mode
is an unstable ideal internal kink mode (with approximatelyconstant amplitude in each inde-
pendent sub-interval in between the rational surfaces, butrapidly varying across, see Fig. 5 of
Ref. [9]), whereas then = 2 mode is ideally stable, but unstable with respect to tearing.
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Figure 1:Spectral Web for the m= 1, k= 1.28 internal kink mode

of a FFF of constantα = 8.0, subjected to a constant Doppler

shift, kvz = 0.4. Eigenvalues (black dots) are located at the inter-

sections of the solution path (red) and the conjugate path (blue).

In Fig. 1 the spectral web is
shown for the internal kink mode
of a FFF equilibrium subjected
to a constant flow in the longi-
tudinal direction, a trivial change
with respect to the static equilib-
rium. The solution path is just a
straight line parallel to the imag-
inary axis, and the mode has the
same growth rate as in the static
case, but it obtains a finite real os-
cillation frequency (the Doppler
shift). The value ofα is chosen
such that there are two rational
surfaces in the plasma. The ef-
fect of shear flowonto the spec-
tral web is shown in Fig. 2: A
second branch of the solution
path appears with a faster grow-
ing mode on it (labeledI2): the
n = 2 tearing mode has become
ideally unstable! Moreover, a tiny
structure of intersecting solution
path and conjugate path curves
appears with modes labeledG1,
G2, . . . on it (further illustrated in
the inset). These modes result from the extrema of the continuous spectra (plotted versusx≡ r/a
in the upper part of the figure). Those extrema would give riseto stable Global Alfvén Eigen-
modes (GAEs) on a small sub-interval about the extrema (really local modes then), but on the
full interval they become unstable with a global eigenfunction. We will call them Flow-driven
Global Alfvén Eigenmode (FGAE) instabilities. There is an infinity of them.

In summary: the Spectral Web method has revealed, in a very direct and intuitive way, the
existence of new modes: a flow-drivenn = 2 internal kink mode, with localizationoutsidethe
first singularity, and a class of infinitely many FGAEs with localization across the whole plasma
but with rapid oscillations at the extrema of the continua.

3. Conclusions
• The Spectral Web is a powerful new tool producing the complete complex spectrum of

instabilities of plasma equilibria with flow.

• The break-up in inner/outer plasma regions is optimal for the incorporation of external
modes, fast particle effects, control of instabilities by RF excitation, etc.

• The example of a FFF illustrates how shear flow turns tearing modes into ideal internal
kink modes, and induces Flow-driven Global Alfvén Eigenmode (FGAE) instabilities.

• Many more examples have been computed (interchanges, resistive wall modes, Rayleigh–
Taylor, magneto-rotational instabilities, etc.): to be reported elsewhere.
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Figure 2:Spectral Web for the different modes of the same force-free magnetic field configuration as in

Fig.1, but subjected to shear flow, vz = 0.9(1− r2). Two internal kink modes (I1 and I2) and an infinity of

FGAEs (G1, G2, . . . ) are indicated in the inset. The upper part of the figure indicates the radial profiles

of the Doppler shiftΩ0 and of the Doppler shifted Alfvén and slow continuaΩ±
A andΩ±

S .

References
[1] K. Hain, R. Lüst and A. Schlüter,Z. Naturforsch.12a, 833 (1957);

I. B. Bernstein, E. A. Frieman, M. D. Kruskal and R. M. Kulsrud, Proc. Roy. Soc. (London)A244, 17 (1958).

[2] E. Frieman and M. Rotenberg,Rev. Mod. Phys.32, 898 (1960).

[3] E. Hameiri,J. Math. Phys.22, 2080 (1981).

[4] A. Bondeson, R. Iacono and A. H. Bhattacharjee,Phys. Fluids30, 2167 (1987).

[5] J. P. Goedbloed,Phys. Plasmas16, 122110 &16, 122111 (2009).

[6] L. Woltjer, Astrophys. J.128, 384 (1958).

[7] W. A. Newcomb,Ann. Phys. (New York)10, 232 (1960).

[8] D. Voslamber and D. K. Callebaut,Phys. Rev.128, 2016 (1962).

[9] J. P. Goedbloed and H. J. L. Hagebeuk,Phys. Fluids15, 1090 (1972).

[10] J. B. Taylor,Rev. Mod. Phys.58, 741 (1986).

[11] R. Ortolani and D. Schnack,Magnetohydrodynamics of Plasma Relaxation(World Scientific, 1993).

[12] P. M. Bellan,Spheromaks(Imperial College Press, London, 2010).

[13] T. Wiegelmann and T. Sakurai,Living Rev. Solar Phys.9, 5 (2012).

43rd EPS Conference on Plasma Physics O3.406


